Dr. Anton Malevich

Aufgabe 3.1

- a) Zeichnen und berechnen Sie die ersten 12 Zeilen des Pascalschen Dreiecks (von n=0bis n=11). Färben Sie in einer Zeichnung alle durch 3 teilbaren Einträge ein und in einer anderen alle durch 5 teilbaren. Sehen Sie ein Muster?
- b) Berechnen Sie die folgenden Summen:

i)
$$\sum_{k=1}^{11} {11 \choose k}$$
,

i)
$$\sum_{k=0}^{11} {11 \choose k}$$
, ii) $\sum_{k=0}^{10} {10 \choose k} (-1)^k$, iii) $\sum_{k=0}^{9} {9 \choose k} 2^k$.

iii)
$$\sum_{k=0}^{9} \binom{9}{k} 2^k.$$

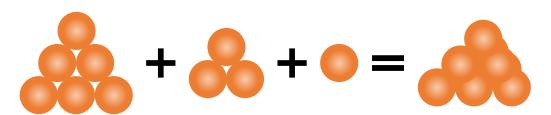
c) Beweisen Sie: Für $n, m \in \mathbb{N}_0$ gilt

$$\sum_{k=0}^{m} \binom{n+k}{n} = \binom{n+m+1}{n+1}.$$

d) Beweisen Sie die folgende Verallgemeinerung der aus der Schule bekannten dritten binomischen Formel: Für alle $x, y \in \mathbb{R}$ und alle $n \in \mathbb{N}$ gilt

$$(x-y)(x^n + x^{n-1}y + x^{n-2}y^2 + \dots + xy^{n-1} + y^n) = x^{n+1} - y^{n+1}.$$

Aufgabe 3.2 Ein Obsthändler stapelt seine Orangen nach folgendem Mustern zu Tetraedern:



Die Anzahl Orangen, die er für einen Tetradeder mit Kantenlänge n benötigt, bezeichnen wir als n-te Tetraederzahl T_n .

- a) Berechnen Sie die ersten fünf Tetraederzahlen.
- b) Wo finden Sie diese Zahlen im Pascalschen Dreieck?
- c) Stellen Sie eine Formel für die n-te Tetraederzahl auf und beweisen Sie diese.

Aufgabe 3.3 Sei $n \in \mathbb{N}$. Beweisen Sie die folgenden Aussagen:

a)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n.$$

b) Die natürliche Zahl $5^n + 7$ ist durch 4 teilbar.

Aufgabe 3.4

- a) Wenn zur Zeit 13:37 Uhr ist, wie viel Uhr ist es in 100000 Minuten?
- b) Berechnen Sie die folgenden Werte:
 - i) $11^{100} \mod 5$,
- ii) $5^{100} \mod 3$,
- iii) $3^{102} \mod 5$.

Aufgabe[#] 3.5 Auf wie vielen Wegen lässt sich das Wort MATHERÄTSEL in der Abbildung lesen? Beginnen Sie beim Ablesen mit dem oberen Buchstaben M und gehen Sie dann immer schräg nach unten links oder unten rechts, bis Sie zu dem ganz unten stehenden Buchstaben L gelangen.

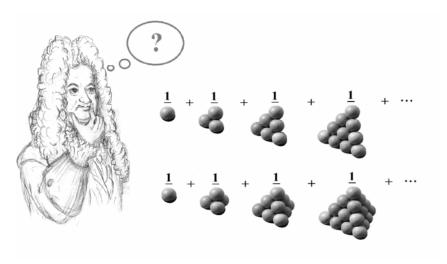
 $\mathbf{Aufgabe}^{\#}$ 3.6 Sei $n \in \mathbb{N}$. Beweisen Sie die folgenden Aussagen:

- a) Die natürliche Zahl $4^n + 15n 1$ ist durch 9 teilbar.
- b) Die natürliche Zahl $7^{2n} 2^n$ ist durch 47 teilbar.

c)
$$\sum_{k=0}^{n} k \binom{n}{k} = n \cdot 2^{n-1}$$
.

Aufgabe[#] 3.7 Berechnen Sie die ungefähren Wahrscheinlichkeiten (in Prozent), dass beim Lotto 6 aus 49 mit einem Tipp genau r Richtige erzielt werden $(0 \le r \le 6)$.

Aufgabe[#] **3.8** Helfen Sie Leibniz die Summe der reziproken Dreieckszahlen sowie die Summe der reziproken Tetraederzahlen zu bestimmen.



Aufgaben mit # werden nicht korrigiert und müssen nicht abgegeben werden.