Dr. Anton Malevich

Aufgabe 5.1

- a) Schreiben Sie $\frac{1}{7}$, $\frac{1}{11}$ und $\frac{1}{13}$ als periodische Dezimalzahlen. Welche Reste treten bei der schriftlichen Division jeweils auf?
- b) Berechnen Sie die Potenzen 10^k modulo 7, 11 und 13 jeweils bis sich die Werte zu wiederholen anfangen. Welchen Zusammenhang kann man zu Aufgabenteil a) erkennen?

Aufgabe 5.2 Dezimalentwicklung von Brüchen.

- a) Bestimmen Sie für die folgenden Brüche die Dezimalentwicklung und geben Sie jeweils die Periode an:
- i) $\frac{1}{24}$, ii) $\frac{2}{27}$, iii) $\frac{500}{222}$.
- b) Schreiben Sie die folgenden rationalen Zahlen als unkürzbare Brüche:
 - i) $4.08\overline{3}$,
- ii) $1,12\overline{216}$,
- iii) $0.0054\overline{9}$.

Aufgabe 5.3 Es sei $\frac{a}{h}$ ein gekürzter Bruch. Der Ford-Kreis über $\frac{a}{h}$ ist der Kreis mit Mittelpunkt $M = \left(\frac{a}{b}, \frac{1}{2b^2}\right)$ und Radius $\frac{1}{2b^2}$.

a) Zeichnen Sie die Ford-Kreise zu den folgenden Brüchen (alle auf einer Zeichnung):

$$\frac{0}{1}$$
, $\frac{1}{3}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{1}{1}$.

b) Zeigen Sie: Sind $\frac{a}{b}$ und $\frac{c}{d}$ zwei verschiedene Brüche mit |bc - ad| = 1, dann berühren sich die zugehörigen Ford-Kreise (von außen).

Aufgabe 5.4 Berechnen Sie die folgenden Grenzwerte mittels Rechenregeln:

- a) $\lim_{n \to \infty} \frac{4n^2 + 5n + n\sqrt{n}}{3n^2 2n 1}$, b) $\lim_{n \to \infty} \frac{2 \cdot 3^n + 4}{3^{n+1}}$, c) $\lim_{n \to \infty} \frac{2n^2}{n + 2^{-n}}$,
- d) $\lim_{n\to\infty} \frac{n^2+n!}{3^n-n!}$ (*Hinweis:* Beweisen Sie zuerst, dass $\lim_{n\to\infty} \frac{n^2}{n!} = \lim_{n\to\infty} \frac{3^n}{n!} = 0$ ist).

 $\mathbf{Aufgabe}^{\#}$ 5.5 Schreiben Sie folgende rationalen Zahlen als gekürzte Brüche:

a)
$$\frac{5}{6} + \frac{4}{15}$$
, b) $\frac{21}{20} + \frac{12}{14}$, c) $0, \overline{142857}$, d) $0, \overline{27}$, e) $0, 27\overline{45}$, f) $0, 123\overline{456}$.

 $\mathbf{Aufgabe}^{\#}$ 5.6 Bestimmen Sie die Dezimalentwicklung für folgende rationale Zahlen:

a)
$$\frac{114}{55}$$
, b) $\frac{14}{250}$, c) $\frac{1}{15} + \frac{1}{18}$, d) $\frac{16}{50} - \frac{2}{9}$,

Aufgabe# 5.7 Zeigen Sie, dass $\sqrt{3}$ (und im Allgemeinen \sqrt{p} für eine Primzahl p) keine rationale Zahl ist.

 $\mathbf{Aufgabe}^{\#}$ 5.8 Berechnen Sie einige Folgenglieder der folgenden Folgen (Sie dürfen einen Taschenrechner verwenden). Was vermuten Sie passiert für n gegen unendlich?

- a) $a_1 = 2$, $a_{n+1} = \sqrt{a_n}$ (Was passiert mit den Nachkommastellen?).
- b) $a_1 = 2$, $a_{n+1} = \sqrt[3]{a_n}$ (Was passiert mit den Nachkommastellen?).
- c) $a_1 = 1$, $a_{n+1} = a_n + (-1)^n$.
- d) $a_1 = 27$, $a_{n+1} = \begin{cases} \frac{a_n}{2}, & \text{falls } a_n \text{ gerade,} \\ 3 \cdot a_n + 1, & \text{falls } a_n \text{ ungerade.} \end{cases}$
- e) $a_n = n^{20} \cdot (0.99)^n$.

Aufgabe# 5.9 Berechnen Sie die folgenden Grenzwerte mittels Rechenregeln:

- a) $\lim_{n \to \infty} \frac{n^2 + 2n}{3n^2 + 5}$,
- b) $\lim_{n \to \infty} \frac{n^3 + 3n^2}{3n^4 + 4}$,
- c) $\lim_{n\to\infty} \frac{2n\sqrt{n} + 7n + 5}{3n^2},$
- $d) \lim_{n \to \infty} \frac{n^2 + 1}{n\sqrt{n^2 + 1}},$
- e) $\lim_{n \to \infty} \frac{n^2 + 2^n}{n^2 2^n}$,
- f) $\lim_{n \to \infty} \frac{2^n 2^{-n}}{2^n 1}$,
- g) $\lim_{n \to \infty} \frac{2^{3n} 1}{2^{3n} 3^{2n}}$,
- h) $\lim_{n \to \infty} \frac{n! + 3n^9 7}{n^n + 3n^9 + 7}$.

Aufgaben mit # werden **nicht** korrigiert und müssen **nicht** abgegeben werden. Sie werden womöglich noch **vor** der Abgabe in den Übungen gelöst.