On Extremal Codes With Automorphisms

S. Bouyuklieva A. Malevich W. Willems

Optimal Codes and Related Topics, 16.6 – 22.6.2009

- C is a binary, self-dual, doubly-even
 [n, n/2, d]-code
- n is a multiple of 8

• $d \le 4 \lfloor \frac{n}{24} \rfloor + 4$, if "=" *C* is extremal

 Zhang: extremal codes do not exist for n > 3952

Lengths of known extremal codes:

8, 16, 24, 32, 40, 48, 56, 64, 80, 88, 104, 136

For red lengths extended QR codes are extremal.

Lengths of known extremal codes:

8, 16, 24, 32, 40, 48, 56, 64, 80, 88, 104, 136

For red lengths extended QR codes are extremal.

Why Is The Automorphism Group Of Interest?

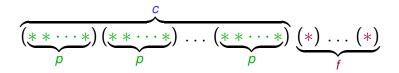
 $G = \operatorname{Aut}(C)$

- ▶ If G is trivial, C is only a vector space
- If G is nontrivial, it may help to construct the code. C is a module for G

Types Of Automorphisms

Definition

 $\sigma \in Aut(C)$ is called of type p - (c, f) if it has exactly c cycles of length p and f fixed points. If n is the length of C then pc + f = n.



Proposition

- C is an extremal self-dual code
- ► C is of length n ≥ 48
- σ ∈ Aut(C) is of type p − (c, f) where p ≥ 5
 is a prime.

Then $c \geq f$.

Assumptions

- ► C is self-dual, doubly-even, extremal
- $\sigma \in \operatorname{Aut}(C)$ of prime order p > n/2

Corollary (for $n \ge 48$)

- c = f = 1 since n = pc + f
- *σ* is of type *p* − (1, 1)
- ▶ n = p + 1 = 24m + 8i, i = 0, 1

i ≠ 2 since 3 | 24m + 16 − 1 not a prime

Assumptions

- C is self-dual, doubly-even, extremal
- $\sigma \in \operatorname{Aut}(C)$ of prime order p > n/2

Corollary (for $n \ge 48$)

•
$$c = f = 1$$
 since $n = pc + f$

•
$$\sigma$$
 is of type $p - (1, 1)$

- ▶ n = p + 1 = 24m + 8i, i = 0, 1
- *i* ≠ 2 since 3 | 24*m* + 16 − 1 not a prime

Definition

s(p) denotes the smallest number $s \in \mathbb{N}$, such that

$$p \mid 2^s - 1.$$
 $s(p) = rac{p-1}{k}, \, k \geq 2 ext{ even}$

Proposition

If k = 2 then C is an extended QR code.

Definition

s(p) denotes the smallest number $s \in \mathbb{N}$, such that

$$p \mid 2^s - 1.$$
 $s(p) = rac{p-1}{k}, \, k \geq 2 ext{ even}$

Proposition

If k = 2 then C is an extended QR code.

Main Result

Theorem

Let C be a self-dual doubly-even extended QR code. Then C is extremal exactly for the lengths

8, 24, 32, 48, 80 and 104

Sketch of the proof

- Task: find a codeword of weight $< 4 \lfloor \frac{n}{24} \rfloor + 4$ in a large code *C*.
- Way out: search in a suitable subcode C' < C.</p>

H < Aut(*C*)

$$\mathcal{C}' = \mathcal{C}^{\mathcal{H}} = \{ \mathcal{c} \in \mathcal{C} \mid \mathcal{ch} = \mathcal{c} \quad \forall h \in \mathcal{H} \}$$

Sketch of the proof

• C extended QR of length n = p + 1

•
$$G = \operatorname{Aut}(C) = \operatorname{PSL}(2, p)$$

H < G

- H = cyclic of order 4 or 6
- $H = \operatorname{Syl}_2(G)$

Conjecture

There are no extremal self-dual doubly-even codes having an automorphism of prime order p > n/2 apart from the cases

n = 8, 24, 32, 48, 80 and 104

List Of Open Cases

р	s(p)	$k = \frac{p-1}{s(p)}$	Num of Codes	d
1399	233	6	2(1)	236
2351	47	50	\geq 671 089	396
2383	397	6	2(1)	400
2687	79	34	\geq 3 856 (1)	452
2767	461	6	2(1)	464
3191	55	58	\geq 9 256 396	536
3343	557	6	2(1)	560
3391	113	30	≥ 1093	568
3463	577	6	2(1)	580
3601	601	6	2(1)	604

Summary

- C is self-dual, doubly-even, extremal
- $\sigma \in \operatorname{Aut}(C)$ of prime order p > n/2

- For s(p) = ^{p−1}/₂ we now all codes due to main result on extended QR codes
- For s(p) < ^{p−1}/₂ some cases still remain open