On Extremal Codes With Automorphisms

Anton Malevich

Magdeburg, 20 April 2010

joint work with S. Bouyuklieva and W. Willems

1. Linear codes

2. Self-dual and extremal codes

3. Quadratic residue codes

4. Automorphisms of extremal codes

1. Linear codes

2. Self-dual and extremal codes

3. Quadratic residue codes

4. Automorphisms of extremal codes

Introduction

- Linear code C is a k-dim subspace of an n-dim vector space
- Generator matrix G consists of basis vectors of C

$$G=\left(egin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{k1} & a_{k2} & \cdots & a_{kn} \end{array}
ight)$$

• Parity check matrix H (size $n \times (n - k)$):

$$Hx = 0$$
 for all $x \in C$

Introduction

- Weight of a codeword is the number of its nonzero coordinates
- Weight enumerator:

$$W_C(x,y) = \sum_{u \in C} x^{n-\operatorname{wt}(u)} y^{\operatorname{wt}(u)} = \sum_{i=0}^n A_i x^{n-i} y^i$$

Parameters [n, k, d] stand for length, dimension and minimum distance.

Automorphism Group

Definition

$$\operatorname{Aut}(\mathcal{C}) = \{ \sigma \in \mathcal{S}_n \mid u\sigma \in \mathcal{C} \text{ for all } u \in \mathcal{C} \}$$

- $G = \operatorname{Aut}(C)$
 - ▶ If G is trivial, C is only a vector space
 - If G is nontrivial, it may help to construct the code. C is a module for G

Types of Automorphisms

Definition

 $\sigma \in \operatorname{Aut}(C)$ is called of type p-(c, f) if it has exactly c cycles of length p and f fixed points. If n is the length of C then pc + f = n.

$$\underbrace{\underbrace{(\underbrace{*} \ast \cdots \ast}_{p})\underbrace{(\underbrace{*} \ast \cdots \ast}_{p}) \cdots \underbrace{(\underbrace{*} \ast \cdots \ast}_{p})\underbrace{(\underbrace{*}) \cdots \underbrace{(\ast}_{f})}_{f}}_{f}$$

1. Linear codes

2. Self-dual and extremal codes

3. Quadratic residue codes

4. Automorphisms of extremal codes

The dual code

$$\mathcal{C}^{\perp} = \{ u \mid u \cdot v = 0 \text{ for all } v \in \mathcal{C} \}$$

The dual weight enumerator

$$W_{C^{\perp}}(x,y) = \frac{1}{|C|}W_C(x+y,x-y)$$

- If $C = C^{\perp}$ the code is self-dual
- For a self-dual code k = n/2 and all codewords have even weight

Self-Dual Codes

 Two types of self-dual codes: Type I (SE): all weights are even Type II (DE): all weights are a multiple of 4

Theorem (Gleason)

Weight enumerator of a self-dual code is a polynomial in f and g of degrees respectively

- ▶ for Type I codes: 2 and 8,
- ▶ for Type II codes: 8 and 24.

Self-Dual Codes

 Two types of self-dual codes: Type I (SE): all weights are even Type II (DE): all weights are a multiple of 4

Corollary Length of a Type II code is a multiple of 8

$$n = 24m + 8i$$
, $i = 0, 1$ or 2

Extremality

Corollary (Mallows, Sloane)

d ≤ 4
$$\lfloor \frac{n}{24} \rfloor$$
 + 4 Type II (tight)
d ≤ 2 $\lfloor \frac{n}{8} \rfloor$ + 2 Type I (NOT tight)

Theorem (Rains, using shadow) New bounds for Type I codes are:

d ≤ 4
$$\lfloor \frac{n}{24} \rfloor$$
 + 4 *n* ≠ 22 (mod 24)
d ≤ 4 $\lfloor \frac{n}{24} \rfloor$ + 6 *n* ≡ 22 (mod 24)

Zhang: no extremal DE codes for n > 3952

Lengths of known extremal codes:

 $8, 16, 24, {\color{red}{32}}, {\color{red}{40}}, {\color{red}{48}}, {\color{red}{56}}, {\color{red}{64}}, {\color{red}{80}}, {\color{red}{88}}, {\color{red}{104}}, {\color{red}{112}}, {\color{red}{136}}$

For red lengths extended quadratic residue codes are extremal.

For blue lengths quadratic double circulant codes are extremal.

Existing Codes

[24,12,8] Golay code

- $Aut(C) = M_{24}$ (5-transitive)
- Order of Aut(*C*): $2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$
- Unique

[48,24,12] QR-code

- $Aut(C) = PSL_2(47)$ (2-transitive)
- Order of Aut(C): $2^4 \cdot 3 \cdot 23 \cdot 47$
- Unique (computer search)

Putative Codes

[72, 36, 16]-code

- Aut(C) is solvable
- Possible primes in |Aut(C)|: 2, 3, 5, 7
- Possible order: $|Aut(C)| \leq 36$

[96, 48, 20]-code

▶ Possible primes in |Aut(*C*)|: 2, 3, 5

1. Linear codes

2. Self-dual and extremal codes

3. Quadratic residue codes

4. Automorphisms of extremal codes

Cyclic Codes

$$G = \left(egin{array}{ccccc} a_0 & a_1 & \cdots & a_p \ a_p & a_0 & \cdots & a_{p-1} \ dots & dots & \ddots & dots \ a_1 & a_2 & \cdots & a_0 \end{array}
ight)$$

- *C* is an ideal in $\mathbb{F}_2[x]/_{\langle x^p-1\rangle}$
- $C = \langle e(x) \rangle$ with $e(x) = e^2(x)$
- Automorphisms of C:
 - cyclic shift σ of order p
 - $\mu : \mathbf{x} \mapsto \mathbf{x}^2$ of order $\mathbf{s}(\mathbf{p})$

Definition of QR Codes

- $p \equiv \pm 1 \mod 8$
- Quadratic residues Q and nonresidues N
- QR codes are cyclic codes with $e(x) = \sum_{n \in N} x^n$ or $e(x) = \sum_{r \in Q} x^r$

Extended QR Codes

- If $p \equiv -1 \mod 8$:
 - Extended QR code C is self-dual of Type II
 - Aut(C) = PSL₂(p), $p \neq 7$ or 23
 - Aut(C) is 2-transitive

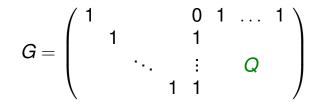
•
$$|\operatorname{Aut}(C)| = p^{(p-1)(p+1)}/2}$$

Importance of QR Codes

- Hamming and Golay codes are QR
- Large minimum distance: d² − d + 1 ≥ p (if p ≡ ±1 mod 8)
- Asymptotically good?
- Different decoding techniques

Quadratic Double Circulant Codes

•
$$n = 2q + 2$$
, $q \equiv 3 \mod 8$ is a prime



- ► Q cyclic matrix, corr. to residues
- C is self-dual of Type II
- $\operatorname{Aut}(C) = \operatorname{PSL}_2(q) \times \mathbb{Z}_2$

1. Linear codes

2. Self-dual and extremal codes

3. Quadratic residue codes

4. Automorphisms of extremal codes

Motivation

n	d	$p \mid \operatorname{Aut}(C) $	comment
8	4	2, <mark>3</mark> , 7	xQR, QDC
24	8	2, 3, 5, 7, 11, 23	xQR, QDC
32	8	2, 3, 5, 7, <mark>31</mark>	xQR
40	8	2,3,5,7,19	QDC
48	12	2, 3, <mark>23</mark> , 47	xQR
80	16	2, 5, 19, <mark>79</mark>	xQR
88	16	2, 3, 7, 11, 43	QDC
104	16	2, 3, 13, 17, 103	xQR
112	16	2,7	<i>Harada</i> , 2008
136	20	2, 3, 11, <mark>67</mark>	QDC

Possible Automorphisms

Theorem

- C is an extremal self-dual code
- ► C is of length n ≥ 48
- σ ∈ Aut(C) is of type p − (c, f) where p ≥ 5 is a prime.

Then $c \geq f$.

Assumptions

- C is self-dual, doubly-even, extremal
- $\sigma \in \operatorname{Aut}(C)$ of prime order p > n/2

Corollary

- c = f = 1 since n = pc + f
- σ is of type p (1, 1)
- n = p + 1 = 24m + 8i, i = 0, 1
- $i \neq 2$ since 24m + 16 1 is not a prime

Definition

s(p) denotes the smallest number $s \in \mathbb{N}$, such that

$$p \mid 2^s - 1.$$

In our case: $s(p) = rac{p-1}{k}, k \geq 2$ even

Proposition

If k = 2 then C is an extended QR code.

Definition

s(p) denotes the smallest number $s \in \mathbb{N}$, such that

$$p \mid 2^s - 1.$$

In our case: $s(p) = rac{p-1}{k}, \, k \geq 2$ even

Proposition

If k = 2 then C is an extended QR code.

Classification of QR Codes

Theorem

Let C be a self-dual doubly-even extended QR code. Then C is extremal exactly for the lengths

8, 24, 32, 48, 80 and 104

Sketch of the proof

- Task: find a codeword of weight $< 4 \lfloor \frac{n}{24} \rfloor + 4$ in a large code *C*.
- Way out: search in a suitable subcode C' < C.</p>
- $H < \operatorname{Aut}(C)$
 - $C' = C^H = \{ \text{codewords fixed by } H \}$

Sketch of the proof

• C extended QR of length n = p + 1

•
$$G = \operatorname{Aut}(C) = \operatorname{PSL}(2, p)$$

H < G

- ► H = cyclic of order 4 or 6
- $H = \operatorname{Syl}_2(G)$

Cases depending on k

$$n = 24m$$
 or $n = 24m + 8$
 $p = n - 1$
 $s(p) = \frac{p - 1}{k}$

k = 2 (one code) solved
 k > 2 (≥ [^{2^{k/2}}/_k] codes) open
 similar method may be applied

Case *k* > 2

- Possibly large number of codes
- C is an extended cyclic code
 automorphisms of order p and s(p)
- Aut(C) is not transitive!
- if s(p) prime \Rightarrow difficulties

List of Open Cases

(p) 33	k	codes	d
33	•		
00	6	2	236
47	50	\geq 671 089	396
97	6	2	400
79	34	\geq 3 856	452
61	6	2	464
55	58	\geq 9 256 396	536
57	6	2	560
13	30	\geq 1 093	568
77	6	2	580
01	6	2	604
	97 79 61 55 57 13 77	47 50 97 6 79 34 61 6 55 58 57 6 13 30 77 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Conjecture

There are no extremal self-dual doubly-even codes having an automorphism of prime order p > n/2 apart from the cases

n = 8, 24, 32, 48, 80 and 104

Summary

- C is self-dual, doubly-even, extremal
- $\sigma \in \operatorname{Aut}(C)$ of prime order p > n/2

- We give full classification of extremal extended QR codes that solves the case s(p) = p-1/2
- For s(p) < ^{p−1}/₂ some cases still remain open