
Performance of Extremal Codes

Anton Malevich

Otto-von-Guericke University
Magdeburg, Germany

Algebraic Combinatorics and Applications

Thurnau, 16 April, 2010

joint work with Wolfgang Willems

1/ 17



Outline

1. What codes do perform better?

2. What codes are extremal?

3. How to study performance of extremal codes?

4. Concluding remarks

2/ 17



Introduction

▶ Linear [n, k ,d ] code C is used for data transmission

A(x , y) =
n∑

i=1

Aixn−iy i ,

Ai is the number of codewords of C of weight i

▶ Symbol error probability is p

▶ Bounded distance decoding is used

▶ Up to t ≤ d−1
2 errors are corrected

3/ 17



What do we call “performance”?

Probability of erroneous decoding from the transmitter and
receiver points of view:

Ptr (C, t ,p) = P
(

Y ∈
∪

c ∕=c′∈C
Bt(c′)

∣∣∣ X = c
)
,

Prv (C, t ,p) = P (X ∈ C ∖ {c} ∣Y ∈ Bt(c)) ,

with the random variables

▶ X – “the sent codeword”,
▶ Y – “the received vector”.

4/ 17



What codes perform better?

Theorem (FALDUM, LAFUENTE, OCHOA, WILLEMS, ’06)
Let C and C′ be [n, k ,d ] codes with weight enumerators A(x , y)
and A′(x , y) respectively. If p is small enough, then the
following conditions are equivalent:
(a) Ptr (C, t ,p) ≤ Ptr (C′, t ,p) ,

(b) Prv (C, t ,p) ≤ Prv (C′, t ,p) ,

(c) A(1, y) ⪯ A′(1, y) , where “⪯” means lexicographical
ordering.

Remark
“≺” means Ad < A′d ,

or Ad = A′d and Ad+1 < A′d+1,
or . . .

5/ 17



Self-dual codes
▶ C⊥ = {u ∣ u ⋅ v = 0 for all v ∈ C} is the dual code

▶ If C = C⊥ the code is self-dual (n = 2k )

▶ Two types of self-dual codes:
Type I (singly-even): all weights are even
Type II (doubly-even): all weights are a multiple of 4

Theorem (GLEASON ’70)

Weight enumerator A(x , y) of a self-dual code is a polynomial
in two invariants f and g, that are

▶ for Type I codes: f = x2 + y2,

g = x2y2 (x2 − y2)2,

▶ for Type II codes: f = x8 + 14x4y4 + y8,

g = x4y4 (x4 − y4)4.

6/ 17



Self-dual codes
▶ C⊥ = {u ∣ u ⋅ v = 0 for all v ∈ C} is the dual code

▶ If C = C⊥ the code is self-dual (n = 2k )

▶ Two types of self-dual codes:
Type I (singly-even): all weights are even
Type II (doubly-even): all weights are a multiple of 4

Corollary

▶ for Type II codes: f = x8 + 14x4y4 + y8,

g = x4y4 (x4 − y4)4.

Length of a Type II code is a multiple of 8

n = 24m + 8i , i = 0,1 or 2

6/ 17



Extremal doubly-even codes

Corollary (MALLOWS, SLOANE ’73)

for Type I codes d ≤ 2
⌊n

8

⌋
+ 2,

for Type II codes d ≤ 4
⌊ n

24

⌋
+ 4.

▶ If “=” codes are called extremal
Weight enumerator is unique

▶ ZHANG ’99: no extremal Type II codes for n > 3952

▶ Extremal Type II codes are known only up to n = 136

▶ The bound for Type I codes is NOT tight

7/ 17



Shadows of self-dual codes

▶ C is a Type I [n,n/2,d ]-code
C0 is a doubly-even subcode; C2 := C ∖ C0

▶ Shadow S = S(C) consists of all u, such that:

u ⋅ v = 1 for all v ∈ C0
u ⋅ v = 0 for all v ∈ C2

▶ S is a non-linear code with weight enumerator S(x , y)

▶ S(x , y) = A
(

x+y√
2
, i x−y√

2

)
▶ If 8 ∣ n then all weights in S are divisible by 4

8/ 17



Extremal singly-even codes

▶ C is a Type I [n,n/2,d ]-code

▶ MALLOWS, SLOANE ’73: d ≤ 2
⌊n

8

⌋
+ 2 (not tight)

Theorem (RAINS ’98)

d ≤ 4
⌊ n

24

⌋
+ 4, n ∕≡ 22 mod 24,

d ≤ 4
⌊ n

24

⌋
+ 6, n ≡ 22 mod 24.

If n = 24m Type I codes do not reach the bound

▶ If n ≡ 8 or 16 mod 24, both Type I and Type II extremal
codes have the same minimal distance

9/ 17



Comparing self-dual and non self-dual codes
▶ C is a self-dual extremal code of Type II
▶ C′ is a non self-dual code with the same parameters

0 . . . d d + 1 d + 2 d + 3 d + 4 d + 5 . . .
∑

1 0 . . . 0 Ad 0 0 0 ∗ 0 . . . 2k

1 0 . . . 0 A′d ∗ ∗ ∗ ∗ ∗ . . . 2k

▶ A′(x , y) ≺ A(x , y) is conjectured,
i.e. C′ is expected to perform better than C

Counterexample (CHENG, SLOANE ’89)

▶ C and C′ are [32,16,8]-codes

▶ Ad = 620 < 681 = A′d

▶ Conjecture is not correct

10/ 17



Comparing self-dual codes for small lengths

n = 24m + 8 or 24m + 16

n d Ad for Type II Ad for Type I

32 8 620 364

40 8 285
125 + 16� (� < 10, 10 ≤ � ≤ 26)
(two known codes with Ad = 285)

56 12 8 190 ≤ 4 862

64 12 2 976 1 312 + 16� (� < 104,104 ≤ � ≤ 284)

80 16 97 565 ≤ 66 845

104 20 1 136 150 ≤ 739 046

11/ 17



Type I codes with unique weight enumerator

▶ s – minimum weight of the shadow S

▶ BACHOC, GABORIT ’04: 2d + s ≤ n
2 + 4

If “=” the code is s-extremal
Ad is known for s-extremal codes

▶ If s is smallest possible
the code is with minimal shadow

If n = 24m + 8:
s = 4m for s-extremal codes
s = 4 for codes with minimal shadow

12/ 17



Best extremal codes of Type I

C is a code of Type I with shadow S
s – minimum weight of the shadow

A(s)(1, y) = 1 + A(s)
d yd + A(s)

d+2yd+2 + ⋅ ⋅ ⋅+ yn

A(4m)
d < A(s)

d for all 4 ≤ s < 4m (BOUYUKLIEVA)

Moreover, we can express A(4)
d through A(4m)

d .

13/ 17



Comparing Type I and Type II extremal codes

n = 24m + 8

▶ C – Type II extremal code
▶ C′ – Type I extremal code with min shadow

f (m) =
A′d
Ad

< 1

▶ C′ performs better than C

⇒ s-extremal codes are better than Type II codes

14/ 17



Behaviour of f (m)

0 50 100 150
m

0.600

0.605

0.610

0.615

0.620

0.625

0.630

f HmL

15/ 17



Concluding remarks

▶ n = 24m + 8

▶ A lot of different weight enumerators for Type I codes

▶ A(4m)
d < . . . < A(si )

d < . . . < A(4)
d < A(sj )

d < . . . < A(sk )
d

▶ For the codes in the tail the problem is not solved

16/ 17



Thank you!

17/ 17


	What codes do perform better?
	What codes are extremal?
	How to study performance of extremal codes?
	Concluding remarks

