Binary Self-dual Extremal Codes

Anton Malevich

Otto-von-Guericke University Magdeburg, Germany

Opatija, 2 June 2010

joint work with S. Bouyuklieva and W. Willems

Introduction

- Linear code is a subspace of \mathbb{F}^n
- Weight of a codeword is the number of its nonzero coordinates
- The dual code

$$C^{\perp} = \{ u \mid u \cdot v = 0 \text{ for all } v \in C \}$$

- If $C = C^{\perp}$ the code is self-dual
- For a self-dual code k = n/2 and all codewords have even weight

Introduction

- Self-dual code is of Type II (DE) if all weights are a multiple of 4
- Length of a Type II code is a multiple of 8

For a Type II code:
$$d \le 4 \lfloor \frac{n}{24} \rfloor + 4$$
,

If "=" then the code is extremal

- ! For extremal codes $n \leq 3952$
- ! The largest length for the known extremal code is n = 136

Introduction

Automorphism Group Aut(C) = { $\sigma \in S_n$ | $u\sigma \in C$ for all $u \in C$ }

Types of automorphisms

 $\sigma \in \operatorname{Aut}(C)$ is called of type p-(c, f) if it has exactly c cycles of length p and f fixed points. If n is the length of C then pc + f = n.

Assumptions

- C is a self-dual extremal code of Type II
- $\sigma \in \operatorname{Aut}(C)$ of prime order p > n/2

Known extremal codes with p > n/2

8, 24, 32, 48, 80, 104

For red lengths only extended quadratic residue codes are extremal.

Theorem

- C is an extremal self-dual code
- ► C is of length n ≥ 48
- σ ∈ Aut(C) is of type p-(c, f) where p ≥ 5 is a prime.

Then $c \geq f$.

- Corollary (p > n/2)
 - c = f = 1 and hence n = p + 1

▶ n = 24m or n = 24m + 8

Definition

s(p) denotes the smallest number $s \in \mathbb{N}$, such that

$$p \mid 2^s - 1.$$

In our case: $s(p) = rac{p-1}{k}, k \ge 2$ even

Proposition

If k = 2 then C is an extended QR code.

Theorem Let C be a self-dual extended QR code of Type II. Then C is extremal exactly for the lengths

8, 24, 32, 48, 80 and 104

Proof Search for a codeword of weight $< 4 \lfloor \frac{n}{24} \rfloor + 4$ in a subcode $C^H < C$.

 $C^{H} = \{ \text{codewords fixed by } H < \operatorname{Aut}(C) \}$

▶ You need to choose suitable *H*!

Case *k* > 2

$$s(p)=\frac{p-1}{k}$$

• Many
$$\left(\geq \left\lceil \frac{2^{k/2}}{k} \right\rceil \right)$$
 inequivalent codes

- C is an extended cyclic (duadic) code
- Automorphisms of order p and s(p)
- If s(p) is large prime ⇒ difficulties
 No suitable H < Aut(C)

Open Cases

- *n* = 24*m*
 - 3 open cases
 - s(p) is small, but k is large
 - Very large number of codes
- n = 24m + 8
 - 6 open cases
 - k = 6, but s(p) is a large prime
 - Only one code for each length

Summary

- $\sigma \in \operatorname{Aut}(C)$ of prime order p > n/2
- $\Rightarrow \sigma$ is of order p = n 1
 - k = 2, only one code, all checked
 - k > 2, many codes, 9 cases open

Conjecture

There are no extremal self-dual codes of Type II having an automorphism of prime order p > n/2 apart from the cases

Thank you for your attention!