Classification of the Extremal Self-Dual Codes with 2-Transitive Aut Groups

Anton Malevich

3ICMCTA, Cardona, Spain 11 – 15 September 2011

joint work with W. Willems

Self-Dual Doubly-Even Codes

- Linear code is a subspace of \mathbb{F}^n
- The dual code

$$\mathcal{C}^{\perp} = \{ v \mid v \cdot u = 0 \text{ for all } u \in \mathcal{C} \}$$

- If $C = C^{\perp}$ the code is self-dual
- For a self-dual code dim = n/2 and all codewords have even weight
- Self-dual code is Type II (doubly-even) if all weights are a multiple of 4

Extremal Doubly-Even Codes

Length of a Type II code is a multiple of 8

For a Type II code:
$$d \le 4 \lfloor \frac{n}{24} \rfloor + 4$$
,

If "=" then the code is extremal

- For extremal codes $n \le 3952$
- The largest length for the known extremal code is n = 136

Automorphism Group

Definition

$$\operatorname{Aut}(\mathcal{C}) = \{ \sigma \in \mathcal{S}_n \mid u\sigma \in \mathcal{C} \text{ for all } u \in \mathcal{C} \}$$

- $G = \operatorname{Aut}(C)$
 - ▶ If G is trivial, C is only a vector space
 - If G is nontrivial, it may help to construct the code. C is a module for G

2-Transitive Automorphism Groups

- C is an extremal Type II code
- Aut(C) acts 2-transitively on coordinates

Known extremal codes with 2-tr. Aut(C)

- Quadratic Residue codes of lengths: 8,24,32,48,80,104
- Reed-Muller code of length 32

Are there more such codes?

The Method

- 1. Use the structure of G = Aut(C)
 - ► The socle of *G* is simple or el. abelian
 - ▶ Length of *C* = degree of *G*
 - \Rightarrow Only few possibilities for G
- 2. Find all *G*-modules of dim n/2
- 3. Find modules that are self-dual as codes
- 4. Check if the codes are extremal
 - Use subgroups of G

Simple Socle

Socle T	$\deg n^\dagger$	dim ⁿ /2 mod.	extremal
M ₂₄	24	Golay code	yes
HS	176	none	
PSU(3,7)	344	none	
PSL(2, 7 ³)	344	GQR code	no
PSL(<i>m</i> , <i>q</i>)	4 pos.	none	
PSp(2 <i>m</i> , 2)	6 pos.	none	
PSL(2, <i>p</i>)	<i>p</i> + 1	QR codes	<i>n</i> ≤ 104*
A _n	п	none	

† 8 | *n*, *n* ≤ 3952

* Bouyuklieva, M., Willems, 2010

Elementary Abelian Socle

- $E = (\mathbb{F}_{p}^{m}, +), |E| = \deg E$ (regular)
- ▶ $n = 2^m, m \le 11$
- ► G ≤ AGL(m, 2)
- $G \cong E \rtimes H, H \leq GL(m, 2)$ transitive
- If H has a (n − 1)-cycle then C is affine invariant

Affine Invariant Codes

- $AGL(1, 2^m) \leq G \leq AGL(m, 2)$
- ► m is odd
- Charpin, Levy-dit-Vehel, 1994: A method to construct all affine invariant codes

т	n	Num of codes	extremal
5	32	1	yes
7	128	3	none
9	512	70	none
11	2048	515617	none

Other Cases

- $G \cong E \rtimes H$, *H* is transitive
- $H \leq GL(m, 2), m \leq 10$ not prime

Possibilities for H

- ▶ $\mathsf{PSL}(k, 2^r) \le H, m = kr$
- $\mathsf{PSp}(k, 2^r) \lhd H$, m = kr, k even
- Sporadic examples for m = 4, 6
- Only for m = 9: 3 self-dual codes for PSL(3, 2³), not extremal

Summary

- Extremal codes with 2-tr. Aut(C) are known
- All self-dual codes with 2-tr. groups?
 - QR and GQR codes with PSL(2, n-1)
 - ► No codes with simple groups for large *n*?
 - Affine-invariant codes with AGL(1, 2^{odd})
 - ▶ 3 codes with $E \rtimes PSL(3, 2^3)$ for $n = 2^9$
 - More codes with $E \rtimes PSL(k, 2^r)$ for $n = 2^{kr}$?
 - No codes for $n = 2^{\text{even}}$?

Thank you for your attention!