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The bond-percolation process is studied on periodic planar random lattices and their duals. The thresholds
and critical exponents of the percolation transition are determined. The scaling functions of the percolating
probability, the existence probability of the appearance of percolating clusters, and the mean cluster size are
also calculated. The simulation result of the percolation threshopd #s0.3333=0.0001 for planar random
lattices, and 0.66700.0001 for the duals of planar random lattices. We conjecture that the exact vaglde of
is 1/3 for a planar random lattice and 2/3 for the dual of a planar random lattice. By taking possible errors into
account, the results of our critical exponents agree with the values given by the universality hypothesis. By
properly adjusting the metric factors on random lattices and their duals, we demonstrate explicitly that the idea
of a universal scaling function with nonuniversal metric factors in the finite-size scaling theory can be extended
to random lattices and their duals for the existence probability, the percolating probability, and the mean cluster
size.[S1063-651X99)00112-9

PACS numbe(s): 64.60.Ak, 05.70.Jk

I. INTRODUCTION lie on a circle. If there is no lattice site inside this circle,
these three sites are connected by links and form a

The percolation procesgl] as defined on a variety of 2-simplex. This procedure, in principle, is_ perfprmed repeat-
lattices has been studied very extensively. Recent resear&lly on all possible groups of three lattice sites. Note that

activities focused on finding new universal quantities and?-Simplices are sites, 1-simplices are links, and 2-simplices

checking the finite-size scaling including corrections to scal2"€ trangles. The dual of a random lattice is constructed in a
ings [2-17]. However, most of the studies have been re_way that the finite ared is partitioned intoN nonoverlap-
INgS [2—17]. HOwWever, udi ping planar convex polyhedra, and there is a one to one

stricted to the use of regular lattices with fixed C‘?Ordinationcorrespondence between polyhedra and random sites. Let
numbers. For example Yonezawtal.[18] used lattices that e gne of the\ random sites. A poinp in A is said to belong
have mixed values of coordination numbers but still have ao i if i is the nearest site o The corresponding polyhedron
regular pattern to release the condition imposed by regulasf sitei consists of all the points belonging toVertices of
lattices in studying. These lattices include dice, Penrose tilN polyhedra are sites of the dual lattice, and they are the
ing, and the dual lattice of Penrose. Their results are consigluals of 2-simplices on the original random lattice. An inter-
tent with the assertion from the universality hypothesisfacial line between two polyhedra is a link between two dual
which states that the critical exponents are independent cfites, and it is the dual of a 1-simplex. Examples of a peri-
the details of the lattice structure but depend on the dimen@dic Planar random lattice with its dual on a rectangular area

sion of the latticg 1,18—2(. Based on the same motivation, is shown in Fig. 1. For a large random lattice, the average

ider th of planar random lattices and their duai:oordination number for a site is 6, and a site on the average
We consider thé case of p S shared by six triangles. There are local fluctuations around

that preserve the rotational symmetry effectively. these average values, and these fluctuations can always be
Random lattices were first introduced by Dirichlet and yescriped by a function with appropriately chosen param-
Voronoi [21] for use in condensed matter physics, and theyeters. For the dual of a planar random lattice, the coordina-
were also employed by Christ, Friedberg, and [2223 to  tion number for a dual site is always 3, and a site is always
formulate other types of lattice field theories. We briefly de-shared by three polyhedra. Rotational symmetry is preserved
scribe the construction and properties of these lattices, aneffectively in random lattices because there is no preferred
refer to Refs[20—27 for the details. Planar random lattices direction. To ensure that the condition of homogeneity is
and their duals are defined on a rectangular area with perimet, for a measurement we average the results from a num-
odic boundary conditions. To construct such lattices, we conber of random lattices.
sider N sites generated by a random number generator and In this paper we study the bond-percolation process on
distributed in a rectangle of areawith periodic boundary periodic planar random lattices and their duals by numerical
condition. A random lattice is constructed in a way that forsimulations. For a bond-percolation model, the link, which
each of theN sites, only nearby sites are connected to it byconnects two nearest neighboring sites, has two states, occu-
links, and the finite are@ is divided into nonoverlapping pied and unoccupied, and a bond exists for an occupied link.
2-simplices with vertices on thB random sites. We adopt If the neighboring links are occupied, the corresponding
the algorithm given by Christ, Friedberg, and U@2,23 to  bonds belong to the same cluster, and the sites connected by
connect a site to nearby ones. Consider an arbitrary group dfiese bonds also are in the same cluster. We use the random
three lattice sites. A circle is drawn such that these three sitdsond process to generate configurations as follows. For a
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existence probability, the percolating probability, and the
mean cluster size. Finally the summary of the results and the
conclusion are given in Sec. VI.

Il. PERCOLATING CLUSTERS ON RANDOM LATTICES

A percolating cluster is defined as a cluster in which the
bonds can extend from one side to the opposite side of a
lattice. In this section we discuss the method we used in
distinguishing a percolating cluster in a periodic planar ran-
dom lattice and its dual. This method can be extended to
higher dimensions in a very straightforward way.

For a periodic square lattice, the condition for a cluster to
be horizontally(vertically) percolated is that it contains at
least one lattice site for each colunfrow). For a cluster
fulfilling this condition, by shifting the lattice with some
rows or columns we are able to find a path in it to go through
the lattice from the lefttop) to the right(bottom. The peri-
odic boundary condition here does not add any complexity in
distinguishing percolating clusters from finite clusters.

Periodic random lattices are similar to square lattices in
that a horizontalvertical) percolating cluster is formed when
the bonds contained in the cluster can be extended from the
boundary sites in the leftop) to those in the rightbottom).
However, due to the periodic boundary condition, it is more
given occupied probabilitp, we associate a random number difficult to identify a percolating cluster on a random lattice.
r, 0<r<1, with a link for all links on the lattice. If the To see this, we view the boundary of a random lattice as a
associated random numbeof a link is less tharp, this link  window, and we define the bonds crossing this window as
is occupied, and a bond exists. Such a bond distribution oboundary bonds and all the sites connected by the boundary
the lattice is a configuration of the bond-percolation modelbonds as boundary sites. Then a percolating cluster contains
For a small value op, only finite clusters appear in configu- at least two boundary sites, with one on the opposite side of
rations. When the value gf increases, the size of a finite the other. However, because of the periodic boundary condi-
cluster will increase, and eventually a percolating cluster aption, the boundary window can be shifted arbitrarily, and for
pears wherp reaches a critical valup, which is called the each shift we have new boundary bonds and boundary sites
percolation threshold. To ensure that the number of configufrom the new location of the square window. Because of the
rations used to calculate the quantities of the model is suffirandom distribution of lattice sites, we have to move the
ciently large, we calculate the ratio of bond numbers to linksquare window very slowly over the whole lattice in order to
numbers for a configuration, average the ratios over all condistinguish all the possible percolating clusters. This method
figurations, and require that the average should be equal wworks, but we propose a more efficient method to solve this
the given occupied probabilify. Then we use these configu- problem.
rations to calculate the existence probability, the percolating First we fix the window for a given lattice, and obtain the
probability, and the mean cluster size on planar random lateorresponding boundary bonds and boundary sites to this
tices and their duals. After averaging the results over a numwindow. Then we use the Hoshen-Kopelman metf24 to
ber of random lattices, we have the final values of thesaive a proper cluster label to each site. Finally, to distinguish
geometric quantities. Using these values, we can calculate percolating cluster, we note that the percolating paths of a
the critical thresholds, critical exponents, and scaling funcpercolating cluster in this fixed square window can be di-
tions. vided into two types. The first type are the paths which ex-

This paper is organized as follows: In Sec. I, we proposdend from the top to the bottom or from the left to the right
an efficient method, which can be extended straightforwardlyvith or without the boundary bonds, as shown in Fi¢g)2
to higher dimensions, to identify the percolating clusters. InThese paths can be observed explicitly in a given fixed
Sec. Ill, we present the simulation results of the percolatingsgquare window. The second type are the paths which contain
probabilities, the existence probabilities, the mean clusteat least one boundary bond, and can extend through the lat-
size distributions, and the mean cluster size for periodidice only when the periodic boundary condition is imposed,
square lattices, and periodic planar random lattices and theas shown in Fig. @). These paths cannot be observed ex-
duals. In Sec. IV, we use the finite-size scaling theory toplicitly because the paths are discontinuous in the fixed
determine the percolation thresholds and extract the criticadquare window 25].
exponents from the simulation results, and the resultant val- To distinguish percolating clusters from all clusters, we
ues are reported. In Sec. V, by choosing the values of thbave to check whether or not one of these two types of paths
nonuniversal metric factors on random lattices and their duexist. First we notice that a percolating cluster has to contain
als properly, we show that universal scaling functions ofat least one boundary site on each of the two opposite sides.
regular lattices can be extended to random lattices for th&hen we start from one of these boundary sites, and follow

FIG. 1. Example of random latticésolid lineg with their duals
(dashed lineson a 2D rectangular area with a periodic boundary
condition.
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FIG. 2. Examples ofa) the first kind of percolating path with-
out boundary bondgbold solid line$ and (b) the second kind of
percolating path with one boundary bofigold solid lines on a
random lattice.

when there exists a site on the lattice which links to the
highest site, with the vertical coordinate higher than the ver-
tical coordinates of all the sites that link to the lowest site.
For a percolating cluster containing this path, we can always
move the square window to a new location, so that the two
end sites of the two paths are two boundary sites located at
two opposite sides of the new square window. By repeating
this procedure to all boundary sites in the same cluster and
by performing a similar check of horizontal clusters, we can
determine all percolating clusters in a configuration defined
on periodic planar random lattices.

IIl. GEOMETRICAL QUANTITIES

The main task of the simulations is to determine the dis-
tribution of finite and percolating clusters for configurations
obtained from random bond processes. This distribution is
then used to determine the geometric quantities, including
the mean cluster size distributiony(p), defined as the ratio
of the average number of clusters witbonds to the total
number of bonds; the percolating probabilR(p), defined
as the ratio of the number of bonds in the percolating cluster
to the total number of bonds; the existence probability
Ep(p), defined as the probability of the appearance of per-
colating configurations; and the mean cluster $¢p), de-
fined as

Sp=3 s Ssn |, )

where the factorsng/2¢_;sn is the probability that a bond
belongs to a cluster containirggbonds. Note that one can
use different spanning rules to define a percolating cluster
[2], and the superscripf in E?,( is used to denote the span-
ning rule for the existence probabilify, . We useE‘Fg for the
existence probability of percolating clusters of vertical cross-
ings, Eg for those of horizontal CrossingEL for those of
simultaneous vertical and horizontal crossings, Erﬁdfor
those of either vertical or horizontal crossings. There is a
relation among these four probabilities;, = E¥+Ep— Ej,
which holds for any occupied probability. There is an addi-
tional probability used in our analyses, which is the average
of E} andEy, defined asEl=5(E}+EJ).

To compare the results, we first perform simulations on
regular square lattices defined on a square of dizeS§0,
100, 120, and 160. Here the sikes defined by relatioN
=L2, andN is the total number of sites. We take 60 occupied

all possible paths to check if there is a path which extends tgrobabilities around the critical percolation threshold for ev-
the other boundary site on the opposite side. When the cheeky 0.002, and use the random bond process to generate 10
is positive, then this cluster is a percolating cluster with theconfigurations for an occupied probability. Then we perform
first type of path. On the other hand, if the check is negativesimulations on random lattices in the case when all the links
then we locate the discontinuity between the two paths staren a random lattice have the same occupied probability. The
ing from the two boundary sites, respectively. Here the twdattices we used are periodic planar random lattices of unit
boundary sites are connected by boundary bonds through tiekensity with their duals defined on a square of sizes30,
periodic boundary condition. For the case of a vertical clus100, 120, and 160. Here we still use the random bond pro-
ter, this is equivalent to obtaining the lowest site at the end ofess to generate 1@onfigurations for an occupied probabil-
the path starting from the top boundary site, and the highesty, and increase the number of configurations around the
site at the end of the path starting from the bottom boundarpeaks of the mean cluster si&p). Note that in order to
site. Such a discontinuous path is of the second type onlgnsure that the obtained results are the same as the results
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FIG. 5. The mean cluster siZ&(p,L) for periodic square lat-
tices(solid curve$, periodic planar random latticédashed curves
and the duals of periodic planar random lattigdstted curvep
The curves of the peaks from up to down curves are for linear
dimensiond. =160, 120, 100, and 80.

FIG. 3. The percolating probabiliti¢3(p,L) for periodic square
lattices (solid curve$, periodic planar random latticeashed
curves, and the duals of periodic planar random latti¢dstted
curves. Below the intersection, the curves from left to right are for
the sized. =80, 100, 120, and 160.

lattice, and the existence probability of the latter is less than
from a homogeneous lattice, we keep averaging the resultpat of a planar random lattice. The percolating probability
from random lattices of the same size, but use different sit@élso has the same feature. From this feature we may con-
distributions until the conditiorE,= E'g is satisfied. We take clude that the coordination number of a lattice plays an es-
the average over 6—10 random lattices depending on the sizential role in the occurrence of percolation, and homogene-
of the lattice. ity enhances the occurrence of percolations.

The results of the percolating probabilities, the existence

probabilities, and the mean cluster size for different types of |v. PERCOLATION THRESHOLDS AND CRITICAL
lattices of different sizes are shown in Figs. 3—5. By com- EXPONENTS
paring the results shown in Figs. 3 and 4, we can see that for o .
a given occupied probability the existence probability of the ~There are many ways of determining the percolation

dual of a planar random lattice is less than that of a regulafirésholds and the critical exponents from the simulation re-
sults given in Sec. IV. Here we mainly use the finite-size

scaling theory[ 26,27 due to the lack of analytic results for
the percolation model on planar random lattices and their
duals. In this section, we first describe the method we use,
and then we present the results. Error analyses and discus-
sions of the results are also given.

To perform the estimations, we note the fact that the de-
rivative dEX/dp may be regarded as the distribution function
of the threshold concentratiqn and this distribution func-
tion takes the Gaussian form of

041 i . dE}(p) 1 1
" i = expg — 5
; dp 2aaXo 2

Wherepé((L) is the average threshold concentration, a@‘d
is the standard deviation fromy(N) with A?=(p?)—(p)?
[1,18,29. For a finite-size system with linear sitg it has
e o 55 oe  os  been recognized that the system sizecales with the cor-
b relation length¢ of the bulk systenf26,27]. The divergence
of the correlation lengtl¥ is described by the critical expo-
FIG. 4. The existence probabilitiﬁ’(p,L) for periodic square  penty as
lattices (solid curve$, periodic planar random latticeashed
curves, and the duals of periodic planar random latti¢dstted Ex|p—pc 7. 3

curves. Below the intersection, the curves from left to right are for
the sized =80, 100, 120, and 160. Then in the finite system we have the relation
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-1.8 TABLE I. The simulation results of the critical exponemtsg,
v, 7, andD for square lattices, planar random lattices, and their
duals with periodic boundary conditions.

Lattices v B y T D
Square 1.3304 0.1395 2.2133 2.0517 1.8954
Planar random 1.3329 0.1388 2.2208 2.0578 1.8959

Dual of planar random 1.3247 0.1320 2.2040 2.0586 1.9010
Theoretical prediction 4/3 5/36  43/18 187/91 91/48

Iog10 AV

values, and we take the average values as our estimations.
o square The estimated value_s of are listed in Table I, and we find
A Planar Random that the largest deviation from the exact value of regular
+ Dual of Planar Random lattices, which isy=1%, is only about 1%. We then take the
23 . ! . ! . L . L . exact valuev=3 for the three types of lattices in obtaining
8 9 20 21 22 2% the critical thresholdp, . We obtainp, by extrapolating the
2911 effective percolation thresholp(L) of finite systems with

FIG. 6. The logarithms of the deviatiohX vs logoL for dif- sizeL according to the scaling relation of E@t), as shown

ferent types of lattices with the spanning ride=U. in Fig. 7, and the result_s we obtain gug=0.5000= 0.0001
for a regular square latticp.=0.3333=0.0001 for a planar
IpX(L) = pelorL =Y 4) random lattice, ang),=0.6670-0.0001 for the dual of a
Cc Cc ’

planar random lattice.
wherepé((L) is the effective percolation threshold in the fi- Our values of the thresholds of planar random lattices and

nite system. This implies that the deviatimﬁ( is also satis- their duals agree with the known relations. First, for an infi-
fied with the scaling law nite latticeL.. and its dualL? , there is a relation between

percolation thresholdgl8,30,31:
Afoc L7, (5)
d
pc(Loo)+pc(Loc):1- (10)

Thus we first use this scaling law to determine the critical

exponentr, and then use Ed4) with the given value of to  Because of the self-duality of a square lattice, this equation
determine 'the perco!atlon threshgdg. Once t'ht.a percolatlon' immediately gives the valug,(square) 3. Comparing with
thres.hold is determmed,_ we emp|0y_ the finite-size scalinghis exact result, our estimation is corrected up to the third
relations of the percolating probabilit?(p,L), the mean  digit after the decimal point. For planar random lattices, the
cluster size S(p,L.), the mean gluster size distribution corresponding value op.(L..)+ pc(Lg) is 1.0003, which
ng(p,L), and the size of a percolating clustgg,(L) forthe  agrees with the exact value again up to the third digit after
finite systems of sizek to determine the critical exponents the decimal point. In addition to this dual relation, there is an

D, 7, B, andy. These scaling relatior{4] are empirical universal quantity about the thresholds, called the
P(pCJ-)OCL_B/V! (6) 0.70
/ 3 Dual of Planar Random
S(pe, L)L, (7) 0.65 |- —h—t———
Ns(Pc)*s™7, 8 0.60 |
and 0.55 |-
Sperd L) = LP. 9 ~ 050 | Square
= v A ?

With the above method, we first use the simulation results:‘) 0.45
of Ex(p,L) to find the derivativedE}(p,L)/dp. Then by '
fitting this derivative to the Gaussian distribution of E8g),

040 4 X
we obtain the effective percolation threshopf{L) and the |t §=ﬁ
. . . . o =
deV|at|onsA)L( for three different spanning rules=U, A, 035 L Planar Randorm
andl. Then, from Eq(5), we can obtain the critical exponent : —f——f————
v for different types of lattices by using the least-square fit.  0.30 : L . L . L .
0.00 0.01 0.02 0.03 0.04

The results of Iongf vs logoL for different types of lat-
tices are shown in Fig. 6, in which the slope of each straight
line corresponds to the exponentl/v. We can obtain three FIG. 7. The extrapolation results of three percolation thresholds
estimations ofy from three different spanning rules for a pY, p2, andp. for periodic square lattices, periodic planar random
type of lattice. There are small variations among these threfttices, and the duals of periodic planar random lattices.

L
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FIG. 8. The shift(pY(L)—p,) vs the widthA} for different

types of lattices. FIG. 9. The logarithm of the size of a percolating cluster,

l0g10Spere: @S @ function of log, L for different types of lattices.

critical value 5, of the effective coordination number, which
is defined as the product of the threshpldand the coordi- nentsp andy by usingv= 3. We list all the results in Table
nation numberz. This critical value seems to be given as | along with the results obtained by Yonezaetal. [18].
(18,32 To give error estimations of the results of critical expo-
nents, we note that the possible source of errors is from the
d numerical method and small lattice size we used, and we
ﬂcEZPc:d_—l, (1D take the deviations of our results of square lattices from the
exact values as the error estimations. These deviations are
which is 2 for two dimensions. For planar random lattices,liStéd in Table I, and they are less than 1% for the expo-
the coordination number varies from site to site, and we tak&@€ntsv, D, 7, andB. A larger deviation, which is about 8%,
the average value 6 to yield the resuit=1.9998. For the 0CCUrs at the va}lue of' If we take into account these dewg-.
duals of random lattices, the coordination number is a contions from the simulation results, then our results of the criti-
stant, 3, and the corresponding is 2.0010. They all agree cal exponents for periodic planar random lattices and their
with the value 2 very well. From the dual relation and theduals deviate by less than 1% from the exact results for
empirical universal value ofy., we may conjecture that the _regular lattices, except for the_ vaIue,@)f_v_, whose deviation
exact value ofp, is 1/3 for a planar random and 2/3 for the S about 5%. However, there is an additional source of errors
dual of a planar random lattice. Besidgg, there is another
universal quantity pointed out by Gropengiesser and Stauffer 4
[9], and it is the shift-to-width ratidpX(L) —p)/AY of the
thresholds for finite systems of enough large size. To see
whether or not this universal value can be extended to ran- 2|
dom lattices, in Fig. 8 we plotpY (L) —p) versusA; for
regular square lattices, planar random lattices, and the dual
of planar random lattices with=10, 20, 40, 80, 100, 120,
and 160. This result indicates thgy(L)—p.) is indeed
proportional toA{ as the size of the lattice is increased, and, =
for different types of lattices, including random lattices, we
have pY(L)—p.)=—2.0A_. Note that this result may pro-
vide another way of determining the percolation threshmld
without knowing the value of critical exponent
To obtain the fractal dimensioD and the critical expo-
nentst, we first plot 0goSperc versus logyL shown in Fig.
9, and logghg(pe) Vversus loggs shown in Fig. 10. Then
according to Eq98) and(9), we can obtain exponenisand €
7 by calculating the slopes using the least-square fit. For the
exponentsB and vy, according to Eqs(6) and (7), we first
plot log;oP versus logyL shown in Fig. 11, and logS FIG. 10. The logarithm of the number of clusters composesl of
versus loggL shown in Fig. 12, and then calculate the slopeshonds, logyns, as a function of log L for different types of
to obtain the values oB/v and y/v, which give the expo- lattices.

O Square
4 Planar Random
+ Dual of Planar Random

o
T

n b(p,))

10g,
o
T

log, (s
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-0.2 TABLE Il. The ratios of the critical exponents from our simu-
O Square lations to the values of the theoretical predictions. The subscript O
4 Planar Random in the critical exponents denotes the value of the theoretical predic-
03r +  Dualof Planar Random tion from regular lattices. The simulation results by Yonezawa
\\\ et al.[18].
0.4 | .
Lattices vivg BIBy vy, 7l7g DIDg
£ o5 \E\E’\—B\B\ Square 0.998 1.004 0.926 0.998 1.000
o Planar random 1.000 0.999 0.930 1.001 1.000
= Dual of planar random 0.994 0.950 0.923 1.002 1.003
0.6 Square 1.01 0.95 0.92 0.96 1.00
'\ﬁ\&‘\e\ Kagome 1.02 076 1.03 096 0.98
ozl Dice 1.01 094 095 097 1.01
Penrose 101 079 103 0.97 0.98
Dual of Penrose 098 090 1.04 096 1.02
-0.8 N 1 N 1 N 1 N
16 1.8 2.0 2.2 2.4
10g,5{L) ing theory[26,27), a quantityX, (t) in a finite system char-

FIG. 11. The logarithm of the mean cluster size, 8, as a acterized by a sizé should obey the general scaling law

function of logyL for different types of lattices. X, (t)~ Lp/vF(tLl/V) (12)

for random lattices. As discussed in Sec. |, there are fluctuayhereF(x), with x=tL", is called a scaling function. This
tions for the structures of random lattices, and the additionadcaling form was pushed one step further by Privman and
errors are due to the use of the average of the results of grisher[28] by introducing the concept of universal scaling
insufficiently large number of sample lattices for a given sitefunctions and nonuniversal metric factors. They argued that
number to represent the result of a uniform random latticethe only nonuniversal factors are metrical ones relating the
To reduce this error, we use the conditiErﬁ=E‘,;, which  relevant variables of the system, and no other nonuniversal
holds for a homogeneous lattice, to decide whether or not thparameters enter into finite-size scaling formulas. Thus by
number of sample lattices for a give site number on planaadjusting the metric factors for different kinds of lattices, we
random lattices is enough. If we take these possible errorsan obtain universal scaling functions. In this section, we
into account, then we may conclude that our results for thexamine whether or not these ideals can be extended to pla-
critical exponents are consistent with the assertion from th@ar random lattices and their duals.

universality hypothesis. First we use the simulation results of lattice sizes
=80, 100, 120, and 160 to pl&,, P/L A", andS/L”"" as
H — 1lv H
V. FINITE-SIZE SCALING AND SCALING FUNCTION functions ofx=(p—pc)L™" for the three types of lattices,

using the exact values of exponents-4/3, 3=5/36, and

For a quantityX to scale asX(t)~t~* near the critical y=43/18 from regular lattices and the percolation thresholds
pointt=0 in the infinite system, according to finite-size scal-p.=0.5 for a regular square lattice, 0.3333 for a planar ran-

dom lattice, and 0.6670 for the dual of the planar random

3.2 lattice; the results are shown in Figs. 13—15. We can see
from these results that all the scaled datalgr, P, andS
respectively, can be described by a single scaling function,
although there is a small but detectable difference in the
scaled data o8 The latter also reflects in a larger deviation
of the value ofy.

To examine the ideal of a universal scaling function with
nonuniversal metric factors, we first note that in the past few
years the behavior cE‘,;(G,p) at the critical probabilityp
=p. for rectangular lattices of widtla and heightb with
different aspect ratiog, r=a/b and different boundary
conditions has attracted researchers’ intdiés23). There is

3.0

2.8

2.2
a unigue value of the aspect ratig such that for the infinite

2ol O Square system aip, we have the relation

: A Planar Random

+ Dual of Planar Random h
Ep(ro.Pc) =Ep(ro.pe), (13
18 L 1 L 1 L 1 1 1
1.8 1.9 2.0 2.1 22 23

and the value oE‘g(ro,pC) is universal for a given boundary

condition. Because of the symmetry with respect to the per-
FIG. 12. The logarithm of the mean cluster size, ;@ as a Mmutation of the two axes for a regular square lattice, one can

function of loggL for different types of lattices. expect thaty=1. For other cases, it has been proposed that

log, (L)
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1.0 /r 0.30
»»»»» L=80
0.25 | L=100
0.8 | Dual of Planar Random —= oo L=120
L=160
| Dual of Planar Random 0.20 |
. 0B
=L
o
Z S
|.>|JCL % 015 | — Square
IR g
;‘ 04 Planar Random &
g
0.10 |-
~~~~~~~~ L=80
o2+ 4S5 o0 7777 L=100
———-L=120 0.05 |- Planar Random
— L=160
0.0 N 1 L1 N N 1 L [ | pool—i——T—=—7 ., 1 . 1 . L + b e
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 20 -5 -4 -3 -2 -1 0 1 2 3 4 5
x=(p-p LI x=(p-p )L™

FIG. 13. The scaled results tﬁg(p,L) for different types of
lattices of sized. =80, 100, 120, and 160 as functions xf (p
_pc)Ll/V-

FIG. 15. The scaled results 8{p,L)/L”'" for different types of
lattices of sized =80, 100, 120, and 160 as functions xof (p
- pc)LlIV-

the value ofr is \3/2 for planar triangular lattices and3
for honeycomb latticef7]. Ziff [17] pointed out that there is
finite-size correction to the value of but such a correction
is not considered in this work. For planar random lattices andollows. The first metric factob, is introduced ifEE by the
their duals, similar to the regular square lattice we can use gelation
symmetry argument to conclude that 1, which, in fact, is

required in our simulations. The value Ef,g(rozl,pc) is

0.93[25] for planar random lattices and their duals with size
L=160. By comparing with the values for other planar regu-With x=D(p—pc)L"". The other two metric facto®, and
lar lattices with periodic boundary conditions, we can seeD3 are introduced irP and S by the relations

that the universal value (E‘,;(roz 1,p.) for periodic bound-

sults ofE‘g, P, andSfor random lattices with those of regu-
lar square lattices for the same size ¥6I50. Following Hu

Ep(p.L)=F(x), (14)

et al.[14], we introduce three nonuniversal metric factors as

” : =LAl
ary conditions can be extended to planar random lattices and DsP(p.L)=L Se(2) (15
their duals. and
Then we determine universal scaling functions and the
values of nonuniversal metric factors by comparing the re- Dés(p,L):Ly/VSS(Z,), (16)
10 with z=D,(p—p LY and 2’ =D4(p—p) L. To deter-
Dual of Planar Random mine the values oD,, we note thaEj in the vicinity of p,
o8 for an infinite lattice with an aspect ratig takes the form
Ep(p,L)=F(0)+AY(p—po)L*"+BY, (17)
. 08F whereBY is the order of (p—p.)L¥"]%. Thus we take the
5 value of AV as the approximate value Bf;, and the resultant
= values ofD for three types of lattices are given in Table IlI.
€ o04r = Planar Random Then we fit the data dE, as a polynomial ok up to the fifth
TABLE llI. The values of metric factor®,, D,, D3, D5, and
0.2 L=80 D for square lattices, random lattices, and their duals with periodic
T boundary conditions.
——L=160
0.0 . I I P TR DR | Lattices Dl D2 D3 Dé Dé
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0
x=(p - p LI Square 1 1 1 1 1

FIG. 14. The scaled results 8f(p,L)/L~#'" for different types
of lattices of sizesd. =80, 100, 120, and 160 as functions f

=(p—poL™".

Planar random 1.166(2) 1.163(6) 1.511(7) 1.179(1) 1.071(6)

Dual of planar
random 1.177(3) 1.175(6) 0.777(5) 1.222(7) 0.571(9)
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FIG. 16. The scaled results &f(x) = E"(G p) as a function of

(A), the dual of a planar random latticet{, the result of Hu
(dashed curye and the fitting(solid curve.

FIG. 17. The scaled results &(z)=DsP(G,p)/L™#'" as a
x=D,(p— pc)LY" for a square lattice[), a planar random lattice function of z=D,(p—p)LY" for a square lattice[{), a planar

random lattice ), the dual of a planar random+(), and the fitting
(solid curve.

power for each lattice, and take the average of the fittings ofribution functions in finite systems. Then we apply finite-
the three different types of lattices as our final result. Thesize scaling theory to the percolating probability, the mean

scaling function obtained in this way i5(x)=0.93(6)
+0.38(5X—0.9(2)x?+0.6(8x3+0.9(8x*+ - - -, which is

cluster size, the mean cluster size distribution, and the size of
a percolating cluster to determine the critical exponé&nts,

shown in Fig. 16 with the data. This scaling function agreesg, andvy. The finite-size scaling behaviors of the percolating

very well with the result obtained by Hat al. [14], who

probability, the existence probability, and the mean cluster

considered square, plane triangular, and honeycomb latticesize are also examined. The results we obtained are summa-
Similar procedures are applied to the percolating probabilityized below.

(1) From the results of the percolating probabilities

P and the mean cluster siZas follows. We use the factor
D; (D3) to adjust the values @p(z) [Sg(z')] such that the

P(p,L), and the existence probabiliti&s(p,L), we can see

values ofSp(0) [Sg(0)] are the same for the three types of that the coordination number of a lattice plays an essential
lattices, and the coefficient of the linear term in the powerrole in the occurrence of percolation, and homogeneity en-
series of p—p.)LY" is used to determine the value of hances the occurrence of percolations.

D,(D3). The values ofD,(D;) and D;(D3) for different
lattices are given in Table Ill, and the resultant scaling
functions are  Sp(z)=0.54(9)+0.47(9)x—0.40(9)?
—0.0(0)z3+0.5(0)z*+ and S¢(z')=0.06(4)
—0.15(8%’ + 0.10(7x'2 + 0.1(0)z'® — 0.0(6)z'* +-- -,
which are shown in Figs. 17 and 18, respectively, with the
data. We notice that Het al. [14] also calculated the uni-
versal scaling functio®p(z), in which the percolating prob-
ability P(p) is defined in terms of the site number, and their
Sp(2z) agrees with ours very well after rescaling an overall

factor. Based on the above results, we therefore concludﬁ
that by choosing the metric factors of random lattices and;

their duals properly, we can extend the universal scaling
functions of regular lattices to random lattices.

VI. SUMMARY AND CONCLUSION

We have extensively studied the bond-percolation proces:
in periodic planar random lattices and their duals. Consider-
ing that the distribution functions of the derivative of the

'S,y

0.20
0.18 |- O square
& planar random
0.16 |- + dual of planar random
+
014 |- + 6ty
+
8
0.12 |- +
S
+0
0.10 - A
+0
0.08 |- + @
41
n
0.06 |- +
)
0.04 | &
|
0.02 |-
0.00 L 1 P | P . . |4n..m.a‘|+m F0A FAD Al
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15
Z=D'(p-p L™

2.0

existence probability with respect to the occupied probability  FIG. 18. The scaled results &(z')=D;S(G,p)/L #* as a
can be thought as the Gaussian distribution function, we eSunction of z’=D}(p—p.)L*" for a square lattice[{), a planar

timate the percolation thresholds and the critical expoment random lattice 4), the dual of a planar random lattice-§, and the
by studying the peak and the standard deviation of the disfitting (solid curve.
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(2) We use the finite-size scaling’L(ochl’V, with X
=U, A, andl, to estimate the critical exponenisof the
correlation length. The results of of regular lattices and
random lattices agree with each other.

(3) We take the theoretical prediction value=4/3 to
estimate the percolation threshopd from our simulation
data, and the results apg=0.3333t0.0001 for planar ran-
dom lattices, ang.=0.6670=0.0001 for the duals of the
planar random lattices. Here the error Bay.. of the thresh-
old is obtained from the largest values|pf— p.| and|p2
—p?|. The shift-to-width ratioqpX(L) — p.)/A{ is a constant

value — 2.0 for the three different types of lattices we stud-

H.-P. HSU AND M.-C. HUANG

PRE 60

exponentsp, 7, B, andy. By taking the possible errors into
account, our results strongly indicate that bond-percolation
processes on planar random lattices and their duals have the
same critical exponents as the processes on regular lattices.
(6) By choosing five nonuniversal factoBs,, D,, Dj,
D,, and D3 properly for planar random lattices and their
duals, we show that the scaling functions of the percolating
probability P(p,L), the existence probabilitE‘,;(p,L), and
the mean cluster siz8(p,L) for planar regular lattices can
be extended to planar random lattices and their duals.
These results strongly indicate that in the domain of the
critical phenomena, except for providing the continuous ro-

ied. This indicates that the universal value of the shift-to-tation symmetry, random lattices do not change the critical
width ratio can be extended to planar random lattices an@henomena of the system.

their duals.

(4) Our percolation thresholds are consistent with the two

known relations. One is the relatign(L..) + p.(L%) =1 for
an infinite latticeL.. and its dualL? ; and the other is the
critical value n. of the effective coordination numbey,
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