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Percolation thresholds, critical exponents, and scaling functions on planar random lattices
and their duals

H.-P. Hsu1,2 and M.-C. Huang1
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The bond-percolation process is studied on periodic planar random lattices and their duals. The thresholds
and critical exponents of the percolation transition are determined. The scaling functions of the percolating
probability, the existence probability of the appearance of percolating clusters, and the mean cluster size are
also calculated. The simulation result of the percolation threshold ispc50.333360.0001 for planar random
lattices, and 0.667060.0001 for the duals of planar random lattices. We conjecture that the exact value ofpc

is 1/3 for a planar random lattice and 2/3 for the dual of a planar random lattice. By taking possible errors into
account, the results of our critical exponents agree with the values given by the universality hypothesis. By
properly adjusting the metric factors on random lattices and their duals, we demonstrate explicitly that the idea
of a universal scaling function with nonuniversal metric factors in the finite-size scaling theory can be extended
to random lattices and their duals for the existence probability, the percolating probability, and the mean cluster
size.@S1063-651X~99!00112-9#

PACS number~s!: 64.60.Ak, 05.70.Jk
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I. INTRODUCTION

The percolation process@1# as defined on a variety o
lattices has been studied very extensively. Recent rese
activities focused on finding new universal quantities a
checking the finite-size scaling including corrections to sc
ings @2–17#. However, most of the studies have been
stricted to the use of regular lattices with fixed coordinat
numbers. For example Yonezawaet al. @18# used lattices tha
have mixed values of coordination numbers but still hav
regular pattern to release the condition imposed by reg
lattices in studying. These lattices include dice, Penrose
ing, and the dual lattice of Penrose. Their results are con
tent with the assertion from the universality hypothe
which states that the critical exponents are independen
the details of the lattice structure but depend on the dim
sion of the lattice@1,18–20#. Based on the same motivatio
we consider the case of planar random lattices and their d
that preserve the rotational symmetry effectively.

Random lattices were first introduced by Dirichlet a
Voronoi @21# for use in condensed matter physics, and th
were also employed by Christ, Friedberg, and Lee@22,23# to
formulate other types of lattice field theories. We briefly d
scribe the construction and properties of these lattices,
refer to Refs.@20–22# for the details. Planar random lattice
and their duals are defined on a rectangular area with p
odic boundary conditions. To construct such lattices, we c
sider N sites generated by a random number generator
distributed in a rectangle of areaA with periodic boundary
condition. A random lattice is constructed in a way that
each of theN sites, only nearby sites are connected to it
links, and the finite areaA is divided into nonoverlapping
2-simplices with vertices on theN random sites. We adop
the algorithm given by Christ, Friedberg, and Lee@22,23# to
connect a site to nearby ones. Consider an arbitrary grou
three lattice sites. A circle is drawn such that these three s
PRE 601063-651X/99/60~6!/6361~10!/$15.00
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lie on a circle. If there is no lattice site inside this circl
these three sites are connected by links and form
2-simplex. This procedure, in principle, is performed repe
edly on all possible groups of three lattice sites. Note t
0-simplices are sites, 1-simplices are links, and 2-simpli
are triangles. The dual of a random lattice is constructed
way that the finite areaA is partitioned intoN nonoverlap-
ping planar convex polyhedra, and there is a one to
correspondence between polyhedra and random sites.i
be one of theN random sites. A pointp in A is said to belong
to i if i is the nearest site top. The corresponding polyhedro
of site i consists of all the points belonging toi. Vertices of
N polyhedra are sites of the dual lattice, and they are
duals of 2-simplices on the original random lattice. An inte
facial line between two polyhedra is a link between two du
sites, and it is the dual of a 1-simplex. Examples of a pe
odic planar random lattice with its dual on a rectangular a
is shown in Fig. 1. For a large random lattice, the avera
coordination number for a site is 6, and a site on the aver
is shared by six triangles. There are local fluctuations aro
these average values, and these fluctuations can alway
described by ag function with appropriately chosen param
eters. For the dual of a planar random lattice, the coord
tion number for a dual site is always 3, and a site is alwa
shared by three polyhedra. Rotational symmetry is preser
effectively in random lattices because there is no prefer
direction. To ensure that the condition of homogeneity
met, for a measurement we average the results from a n
ber of random lattices.

In this paper we study the bond-percolation process
periodic planar random lattices and their duals by numer
simulations. For a bond-percolation model, the link, whi
connects two nearest neighboring sites, has two states, o
pied and unoccupied, and a bond exists for an occupied l
If the neighboring links are occupied, the correspond
bonds belong to the same cluster, and the sites connecte
these bonds also are in the same cluster. We use the ran
bond process to generate configurations as follows. Fo
6361 © 1999 The American Physical Society
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6362 PRE 60H.-P. HSU AND M.-C. HUANG
given occupied probabilityp, we associate a random numb
r , 0,r ,1, with a link for all links on the lattice. If the
associated random numberr of a link is less thanp, this link
is occupied, and a bond exists. Such a bond distribution
the lattice is a configuration of the bond-percolation mod
For a small value ofp, only finite clusters appear in configu
rations. When the value ofp increases, the size of a finit
cluster will increase, and eventually a percolating cluster
pears whenp reaches a critical valuepc which is called the
percolation threshold. To ensure that the number of confi
rations used to calculate the quantities of the model is su
ciently large, we calculate the ratio of bond numbers to l
numbers for a configuration, average the ratios over all c
figurations, and require that the average should be equ
the given occupied probabilityp. Then we use these configu
rations to calculate the existence probability, the percola
probability, and the mean cluster size on planar random
tices and their duals. After averaging the results over a n
ber of random lattices, we have the final values of th
geometric quantities. Using these values, we can calcu
the critical thresholds, critical exponents, and scaling fu
tions.

This paper is organized as follows: In Sec. II, we propo
an efficient method, which can be extended straightforwar
to higher dimensions, to identify the percolating clusters.
Sec. III, we present the simulation results of the percolat
probabilities, the existence probabilities, the mean clu
size distributions, and the mean cluster size for perio
square lattices, and periodic planar random lattices and t
duals. In Sec. IV, we use the finite-size scaling theory
determine the percolation thresholds and extract the crit
exponents from the simulation results, and the resultant
ues are reported. In Sec. V, by choosing the values of
nonuniversal metric factors on random lattices and their
als properly, we show that universal scaling functions
regular lattices can be extended to random lattices for

FIG. 1. Example of random lattices~solid lines! with their duals
~dashed lines! on a 2D rectangular area with a periodic bounda
condition.
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existence probability, the percolating probability, and t
mean cluster size. Finally the summary of the results and
conclusion are given in Sec. VI.

II. PERCOLATING CLUSTERS ON RANDOM LATTICES

A percolating cluster is defined as a cluster in which t
bonds can extend from one side to the opposite side o
lattice. In this section we discuss the method we used
distinguishing a percolating cluster in a periodic planar ra
dom lattice and its dual. This method can be extended
higher dimensions in a very straightforward way.

For a periodic square lattice, the condition for a cluster
be horizontally~vertically! percolated is that it contains a
least one lattice site for each column~row!. For a cluster
fulfilling this condition, by shifting the lattice with some
rows or columns we are able to find a path in it to go throu
the lattice from the left~top! to the right~bottom!. The peri-
odic boundary condition here does not add any complexity
distinguishing percolating clusters from finite clusters.

Periodic random lattices are similar to square lattices
that a horizontal~vertical! percolating cluster is formed whe
the bonds contained in the cluster can be extended from
boundary sites in the left~top! to those in the right~bottom!.
However, due to the periodic boundary condition, it is mo
difficult to identify a percolating cluster on a random lattic
To see this, we view the boundary of a random lattice a
window, and we define the bonds crossing this window
boundary bonds and all the sites connected by the boun
bonds as boundary sites. Then a percolating cluster cont
at least two boundary sites, with one on the opposite sid
the other. However, because of the periodic boundary co
tion, the boundary window can be shifted arbitrarily, and
each shift we have new boundary bonds and boundary s
from the new location of the square window. Because of
random distribution of lattice sites, we have to move t
square window very slowly over the whole lattice in order
distinguish all the possible percolating clusters. This meth
works, but we propose a more efficient method to solve t
problem.

First we fix the window for a given lattice, and obtain th
corresponding boundary bonds and boundary sites to
window. Then we use the Hoshen-Kopelman method@24# to
give a proper cluster label to each site. Finally, to distingu
a percolating cluster, we note that the percolating paths
percolating cluster in this fixed square window can be
vided into two types. The first type are the paths which e
tend from the top to the bottom or from the left to the rig
with or without the boundary bonds, as shown in Fig. 2~a!.
These paths can be observed explicitly in a given fix
square window. The second type are the paths which con
at least one boundary bond, and can extend through the
tice only when the periodic boundary condition is impose
as shown in Fig. 2~b!. These paths cannot be observed e
plicitly because the paths are discontinuous in the fix
square window@25#.

To distinguish percolating clusters from all clusters, w
have to check whether or not one of these two types of pa
exist. First we notice that a percolating cluster has to con
at least one boundary site on each of the two opposite si
Then we start from one of these boundary sites, and fol
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PRE 60 6363PERCOLATION THRESHOLDS, CRITICAL EXPONENTS, . . .
all possible paths to check if there is a path which extend
the other boundary site on the opposite side. When the ch
is positive, then this cluster is a percolating cluster with
first type of path. On the other hand, if the check is negat
then we locate the discontinuity between the two paths s
ing from the two boundary sites, respectively. Here the t
boundary sites are connected by boundary bonds through
periodic boundary condition. For the case of a vertical cl
ter, this is equivalent to obtaining the lowest site at the end
the path starting from the top boundary site, and the high
site at the end of the path starting from the bottom bound
site. Such a discontinuous path is of the second type o

FIG. 2. Examples of~a! the first kind of percolating path with
out boundary bonds~bold solid lines! and ~b! the second kind of
percolating path with one boundary bond~bold solid lines! on a
random lattice.
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when there exists a site on the lattice which links to t
highest site, with the vertical coordinate higher than the v
tical coordinates of all the sites that link to the lowest si
For a percolating cluster containing this path, we can alw
move the square window to a new location, so that the t
end sites of the two paths are two boundary sites locate
two opposite sides of the new square window. By repeat
this procedure to all boundary sites in the same cluster
by performing a similar check of horizontal clusters, we c
determine all percolating clusters in a configuration defin
on periodic planar random lattices.

III. GEOMETRICAL QUANTITIES

The main task of the simulations is to determine the d
tribution of finite and percolating clusters for configuratio
obtained from random bond processes. This distribution
then used to determine the geometric quantities, includ
the mean cluster size distributionns(p), defined as the ratio
of the average number of clusters withs bonds to the total
number of bonds; the percolating probabilityP(p), defined
as the ratio of the number of bonds in the percolating clus
to the total number of bonds; the existence probabi
Ep(p), defined as the probability of the appearance of p
colating configurations; and the mean cluster sizeS(p), de-
fined as

S~p!5(
s51

`

sS sns

(
s51

` snsD , ~1!

where the factor,sns /(s51
` sns is the probability that a bond

belongs to a cluster containings bonds. Note that one ca
use different spanning rules to define a percolating clu
@2#, and the superscriptX in Ep

X is used to denote the span
ning rule for the existence probabilityEp . We useEp

v for the
existence probability of percolating clusters of vertical cro
ings, Ep

h for those of horizontal crossings,Ep
I for those of

simultaneous vertical and horizontal crossings, andEp
U for

those of either vertical or horizontal crossings. There is
relation among these four probabilities,Ep

U5Ep
v1Ep

h2Ep
I ,

which holds for any occupied probability. There is an ad
tional probability used in our analyses, which is the avera
of Ep

v andEp
h defined asEp

A5 1
2 (Ep

v1Ep
h).

To compare the results, we first perform simulations
regular square lattices defined on a square of sizesL580,
100, 120, and 160. Here the sizeL is defined by relationN
5L2, andN is the total number of sites. We take 60 occupi
probabilities around the critical percolation threshold for e
ery 0.002, and use the random bond process to generate5

configurations for an occupied probability. Then we perfo
simulations on random lattices in the case when all the li
on a random lattice have the same occupied probability.
lattices we used are periodic planar random lattices of u
density with their duals defined on a square of sizesL580,
100, 120, and 160. Here we still use the random bond p
cess to generate 105 configurations for an occupied probabi
ity, and increase the number of configurations around
peaks of the mean cluster sizeS(p). Note that in order to
ensure that the obtained results are the same as the re
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6364 PRE 60H.-P. HSU AND M.-C. HUANG
from a homogeneous lattice, we keep averaging the res
from random lattices of the same size, but use different
distributions until the conditionEp

v5Ep
h is satisfied. We take

the average over 6–10 random lattices depending on the
of the lattice.

The results of the percolating probabilities, the existen
probabilities, and the mean cluster size for different types
lattices of different sizes are shown in Figs. 3–5. By co
paring the results shown in Figs. 3 and 4, we can see tha
a given occupied probability the existence probability of t
dual of a planar random lattice is less than that of a reg

FIG. 3. The percolating probabilitiesP(p,L) for periodic square
lattices ~solid curves!, periodic planar random lattices~dashed
curves!, and the duals of periodic planar random lattices~dotted
curves!. Below the intersection, the curves from left to right are f
the sizesL580, 100, 120, and 160.

FIG. 4. The existence probabilitiesEp
U(p,L) for periodic square

lattices ~solid curves!, periodic planar random lattices~dashed
curves!, and the duals of periodic planar random lattices~dotted
curves!. Below the intersection, the curves from left to right are f
the sizesL580, 100, 120, and 160.
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lattice, and the existence probability of the latter is less th
that of a planar random lattice. The percolating probabi
also has the same feature. From this feature we may c
clude that the coordination number of a lattice plays an
sential role in the occurrence of percolation, and homoge
ity enhances the occurrence of percolations.

IV. PERCOLATION THRESHOLDS AND CRITICAL
EXPONENTS

There are many ways of determining the percolat
thresholds and the critical exponents from the simulation
sults given in Sec. IV. Here we mainly use the finite-si
scaling theory@26,27# due to the lack of analytic results fo
the percolation model on planar random lattices and th
duals. In this section, we first describe the method we u
and then we present the results. Error analyses and dis
sions of the results are also given.

To perform the estimations, we note the fact that the
rivative dEp

X/dp may be regarded as the distribution functio
of the threshold concentrationp, and this distribution func-
tion takes the Gaussian form of

dEp
X~p!

dp
5

1

A2pDL
X

expF2
1

2 S p2pc
X~L !

DL
X D 2G , ~2!

wherepc
X(L) is the average threshold concentration, andDL

X

is the standard deviation frompc
X(N) with D25^p2&2^p&2

@1,18,29#. For a finite-size system with linear sizeL, it has
been recognized that the system sizeL scales with the cor-
relation lengthj of the bulk system@26,27#. The divergence
of the correlation lengthj is described by the critical expo
nentn as

j}up2pcu2n. ~3!

Then in the finite system we have the relation

FIG. 5. The mean cluster sizeS(p,L) for periodic square lat-
tices~solid curves!, periodic planar random lattices~dashed curves!,
and the duals of periodic planar random lattices~dotted curves!.
The curves of the peaks from up to down curves are for lin
dimensionsL5160, 120, 100, and 80.
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upc
X~L !2pcu}L21/n, ~4!

wherepc
X(L) is the effective percolation threshold in the

nite system. This implies that the deviationDL
X is also satis-

fied with the scaling law

DL
X}L21/n. ~5!

Thus we first use this scaling law to determine the criti
exponentn, and then use Eq.~4! with the given value ofn to
determine the percolation thresholdpc . Once the percolation
threshold is determined, we employ the finite-size scal
relations of the percolating probabilityP(p,L), the mean
cluster size S(p,L), the mean cluster size distributio
ns(p,L), and the size of a percolating clustersperc(L) for the
finite systems of sizesL to determine the critical exponen
D, t, b, andg. These scaling relations@1# are

P~pc ,L !}L2b/n, ~6!

S~pc ,L !}Lg/n, ~7!

ns~pc!}s2t, ~8!

and

sperc~L !}LD. ~9!

With the above method, we first use the simulation res
of Ep

X(p,L) to find the derivative,dEp
X(p,L)/dp. Then by

fitting this derivative to the Gaussian distribution of Eq.~2!,
we obtain the effective percolation thresholdspc

X(L) and the
deviationsDL

X for three different spanning rulesX5U, A,
andI. Then, from Eq.~5!, we can obtain the critical exponen
n for different types of lattices by using the least-square
The results of log10DL

X vs log10L for different types of lat-
tices are shown in Fig. 6, in which the slope of each strai
line corresponds to the exponent21/n. We can obtain three
estimations ofn from three different spanning rules for
type of lattice. There are small variations among these th

FIG. 6. The logarithms of the deviationDL
X vs log10 L for dif-

ferent types of lattices with the spanning ruleX5U.
l

g
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t.

t

e

values, and we take the average values as our estimat
The estimated values ofn are listed in Table I, and we find
that the largest deviation from the exact value of regu
lattices, which isn5 4

3 , is only about 1%. We then take th
exact valuen5 4

3 for the three types of lattices in obtainin
the critical thresholdspc . We obtainpc by extrapolating the
effective percolation thresholdpc

X(L) of finite systems with
sizeL according to the scaling relation of Eq.~4!, as shown
in Fig. 7, and the results we obtain arepc50.500060.0001
for a regular square lattice,pc50.333360.0001 for a planar
random lattice, andpc50.667060.0001 for the dual of a
planar random lattice.

Our values of the thresholds of planar random lattices
their duals agree with the known relations. First, for an in
nite latticeL` and its dualL`

d , there is a relation betwee
percolation thresholds@18,30,31#:

pc~L`!1pc~L`
d !51. ~10!

Because of the self-duality of a square lattice, this equa
immediately gives the valuepc(square)5 1

2 . Comparing with
this exact result, our estimation is corrected up to the th
digit after the decimal point. For planar random lattices,
corresponding value ofpc(L`)1pc(L`

d ) is 1.0003, which
agrees with the exact value again up to the third digit a
the decimal point. In addition to this dual relation, there is
empirical universal quantity about the thresholds, called

TABLE I. The simulation results of the critical exponentsn, b,
g, t, and D for square lattices, planar random lattices, and th
duals with periodic boundary conditions.

Lattices n b g t D

Square 1.3304 0.1395 2.2133 2.0517 1.89
Planar random 1.3329 0.1388 2.2208 2.0578 1.89
Dual of planar random 1.3247 0.1320 2.2040 2.0586 1.90
Theoretical prediction 4/3 5/36 43/18 187/91 91/4

FIG. 7. The extrapolation results of three percolation thresho
pc

U , pc
A , andpc

I for periodic square lattices, periodic planar rando
lattices, and the duals of periodic planar random lattices.
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6366 PRE 60H.-P. HSU AND M.-C. HUANG
critical valuehc of the effective coordination number, whic
is defined as the product of the thresholdpc and the coordi-
nation numberz. This critical value seems to be given a
@18,32#

hc[zpc5
d

d21
, ~11!

which is 2 for two dimensions. For planar random lattic
the coordination number varies from site to site, and we t
the average value 6 to yield the resulthc51.9998. For the
duals of random lattices, the coordination number is a c
stant, 3, and the correspondinghc is 2.0010. They all agree
with the value 2 very well. From the dual relation and t
empirical universal value ofhc , we may conjecture that th
exact value ofpc is 1/3 for a planar random and 2/3 for th
dual of a planar random lattice. Besideshc , there is another
universal quantity pointed out by Gropengiesser and Stau
@9#, and it is the shift-to-width ratio„pc

X(L)2pc…/DL
X of the

thresholds for finite systems of enough large size. To
whether or not this universal value can be extended to
dom lattices, in Fig. 8 we plot„pc

U(L)2pc… versusDL
U for

regular square lattices, planar random lattices, and the d
of planar random lattices withL510, 20, 40, 80, 100, 120
and 160. This result indicates that„pc

U(L)2pc… is indeed
proportional toDL

X as the size of the lattice is increased, an
for different types of lattices, including random lattices, w
have (pc

U(L)2pc).22.0DL
U . Note that this result may pro

vide another way of determining the percolation thresholdpc
without knowing the value of critical exponentn.

To obtain the fractal dimensionD and the critical expo-
nentst, we first plot log10sperc versus log10L shown in Fig.
9, and log10ns(pc) versus log10s shown in Fig. 10. Then
according to Eqs.~8! and~9!, we can obtain exponentsD and
t by calculating the slopes using the least-square fit. For
exponentsb and g, according to Eqs.~6! and ~7!, we first
plot log10 P versus log10L shown in Fig. 11, and log10S
versus log10L shown in Fig. 12, and then calculate the slop
to obtain the values ofb/n and g/n, which give the expo-

FIG. 8. The shift„pc
U(L)2pc… vs the widthDL

U for different
types of lattices.
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nentsb andg by usingn5 4
3 . We list all the results in Table

I along with the results obtained by Yonezawaet al. @18#.
To give error estimations of the results of critical exp

nents, we note that the possible source of errors is from
numerical method and small lattice size we used, and
take the deviations of our results of square lattices from
exact values as the error estimations. These deviations
listed in Table II, and they are less than 1% for the exp
nentsn, D, t, andb. A larger deviation, which is about 8%
occurs at the value ofg. If we take into account these devia
tions from the simulation results, then our results of the cr
cal exponents for periodic planar random lattices and th
duals deviate by less than 1% from the exact results
regular lattices, except for the value ofb/n, whose deviation
is about 5%. However, there is an additional source of err

FIG. 9. The logarithm of the size of a percolating cluste
log10 sperc, as a function of log10 L for different types of lattices.

FIG. 10. The logarithm of the number of clusters composed os
bonds, log10 ns , as a function of log10 L for different types of
lattices.



tu
n
f
ite
ice

th
na
ro
th
th

al

and
g
hat
the
rsal
by
e

we
pla-

,

lds
an-
om
see

ion,
the
n

ith
ew

y
er-
can
hat

-
t 0
dic-
wa

0
0
3

PRE 60 6367PERCOLATION THRESHOLDS, CRITICAL EXPONENTS, . . .
for random lattices. As discussed in Sec. I, there are fluc
tions for the structures of random lattices, and the additio
errors are due to the use of the average of the results o
insufficiently large number of sample lattices for a given s
number to represent the result of a uniform random latt
To reduce this error, we use the conditionEp

h5Ep
v , which

holds for a homogeneous lattice, to decide whether or not
number of sample lattices for a give site number on pla
random lattices is enough. If we take these possible er
into account, then we may conclude that our results for
critical exponents are consistent with the assertion from
universality hypothesis.

V. FINITE-SIZE SCALING AND SCALING FUNCTION

For a quantityX to scale asX(t);t2r near the critical
point t50 in the infinite system, according to finite-size sc

FIG. 11. The logarithm of the mean cluster size, log10 P, as a
function of log10 L for different types of lattices.

FIG. 12. The logarithm of the mean cluster size, log10 S, as a
function of log10 L for different types of lattices.
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ing theory@26,27#, a quantityXL(t) in a finite system char-
acterized by a sizeL should obey the general scaling law

XL~ t !;Lr/nF~ tL1/n!, ~12!

whereF(x), with x5tL1/n, is called a scaling function. This
scaling form was pushed one step further by Privman
Fisher @28# by introducing the concept of universal scalin
functions and nonuniversal metric factors. They argued t
the only nonuniversal factors are metrical ones relating
relevant variables of the system, and no other nonunive
parameters enter into finite-size scaling formulas. Thus
adjusting the metric factors for different kinds of lattices, w
can obtain universal scaling functions. In this section,
examine whether or not these ideals can be extended to
nar random lattices and their duals.

First we use the simulation results of lattice sizesL
580, 100, 120, and 160 to plotEp , P/L2b/n, andS/Lg/n as
functions ofx5(p2pc)L

1/n for the three types of lattices
using the exact values of exponentsn54/3, b55/36, and
g543/18 from regular lattices and the percolation thresho
pc50.5 for a regular square lattice, 0.3333 for a planar r
dom lattice, and 0.6670 for the dual of the planar rand
lattice; the results are shown in Figs. 13–15. We can
from these results that all the scaled data forEp , P, andS,
respectively, can be described by a single scaling funct
although there is a small but detectable difference in
scaled data ofS. The latter also reflects in a larger deviatio
of the value ofg.

To examine the ideal of a universal scaling function w
nonuniversal metric factors, we first note that in the past f
years the behavior ofEp

v(G,p) at the critical probabilityp
5pc for rectangular lattices of widtha and heightb with
different aspect ratiosr , r 5a/b and different boundary
conditions has attracted researchers’ interest@7–23#. There is
a unique value of the aspect ratior 0, such that for the infinite
system atpc we have the relation

Ep
h~r 0 ,pc!5Ep

v~r 0 ,pc!, ~13!

and the value ofEp
v(r 0 ,pc) is universal for a given boundar

condition. Because of the symmetry with respect to the p
mutation of the two axes for a regular square lattice, one
expect thatr 051. For other cases, it has been proposed t

TABLE II. The ratios of the critical exponents from our simu
lations to the values of the theoretical predictions. The subscrip
in the critical exponents denotes the value of the theoretical pre
tion from regular lattices. The simulation results by Yoneza
et al. @18#.

Lattices n/n0 b/b0 g/g0 t/t0 D/D0

Square 0.998 1.004 0.926 0.998 1.00
Planar random 1.000 0.999 0.930 1.001 1.00
Dual of planar random 0.994 0.950 0.923 1.002 1.00
Square 1.01 0.95 0.92 0.96 1.00
Kagome 1.02 0.76 1.03 0.96 0.98
Dice 1.01 0.94 0.95 0.97 1.01
Penrose 1.01 0.79 1.03 0.97 0.98
Dual of Penrose 0.98 0.90 1.04 0.96 1.02
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the value ofr 0 is A3/2 for planar triangular lattices andA3
for honeycomb lattices@7#. Ziff @17# pointed out that there is
finite-size correction to the value ofr, but such a correction
is not considered in this work. For planar random lattices a
their duals, similar to the regular square lattice we can us
symmetry argument to conclude thatr 051, which, in fact, is
required in our simulations. The value ofEp

v(r 051,pc) is
0.93@25# for planar random lattices and their duals with si
L5160. By comparing with the values for other planar reg
lar lattices with periodic boundary conditions, we can s
that the universal value ofEp

v(r 051,pc) for periodic bound-
ary conditions can be extended to planar random lattices
their duals.

Then we determine universal scaling functions and
values of nonuniversal metric factors by comparing the

FIG. 13. The scaled results ofEp
U(p,L) for different types of

lattices of sizesL580, 100, 120, and 160 as functions ofx5(p
2pc)L

1/n.

FIG. 14. The scaled results ofP(p,L)/L2b/n for different types
of lattices of sizesL580, 100, 120, and 160 as functions ofx
5(p2pc)L

1/n.
d
a

-
e

nd

e
-

sults ofEp
v , P, andS for random lattices with those of regu

lar square lattices for the same size 1603160. Following Hu
et al. @14#, we introduce three nonuniversal metric factors
follows. The first metric factorD1 is introduced inEp

v by the
relation

Ep
v~p,L !5F~x!, ~14!

with x5D1(p2pc)L
1/n. The other two metric factorsD2 and

D3 are introduced inP andS by the relations

D3P~p,L !5L2b/nSP~z! ~15!

and

D38S~p,L !5Lg/nSS~z8!, ~16!

with z5D2(p2pc)L
1/y and z85D28(p2pc)L

1/y. To deter-
mine the values ofD1, we note thatEp

v in the vicinity of pc

for an infinite lattice with an aspect ratior 0 takes the form

Ep
v~p,L !5F~0!1Av~p2pc!L

1/n1Bv, ~17!

whereBv is the order of@(p2pc)L
1/n#2. Thus we take the

value ofAv as the approximate value ofD1, and the resultant
values ofD1 for three types of lattices are given in Table II
Then we fit the data ofEp

v as a polynomial ofx up to the fifth

FIG. 15. The scaled results ofS(p,L)/Lg/n for different types of
lattices of sizesL580, 100, 120, and 160 as functions ofx5(p
2pc)L

1/n.

TABLE III. The values of metric factorsD1 , D2 , D3 , D28 , and
D38 for square lattices, random lattices, and their duals with perio
boundary conditions.

Lattices D1 D2 D3 D28 D38

Square 1 1 1 1 1
Planar random 1.166(2) 1.163(6) 1.511(7) 1.179(1) 1.071
Dual of planar

random
1.177(3) 1.175(6) 0.777(5) 1.222(7) 0.571(
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power for each lattice, and take the average of the fitting
the three different types of lattices as our final result. T
scaling function obtained in this way isF(x)50.93(6)
10.38(5)x20.9(2)x210.6(8)x310.9(8)x41•••, which is
shown in Fig. 16 with the data. This scaling function agre
very well with the result obtained by Huet al. @14#, who
considered square, plane triangular, and honeycomb latt
Similar procedures are applied to the percolating probab
P and the mean cluster sizeS as follows. We use the facto
D3 (D38) to adjust the values ofSP(z) @SS(z8)# such that the
values ofSP(0) @SS(0)# are the same for the three types
lattices, and the coefficient of the linear term in the pow
series of (p2pc)L

1/n is used to determine the value o
D2(D28). The values ofD2(D28) and D3(D38) for different
lattices are given in Table III, and the resultant scali
functions are SP(z)50.54(9)10.47(9)z20.40(9)z2

20.0(0)z310.5(0)z41••• and SS(z8)50.06(4)
20.15(8)z8 1 0.10(7)z82 1 0.1(0)z83 2 0.0(6)z84 1•••,
which are shown in Figs. 17 and 18, respectively, with
data. We notice that Huet al. @14# also calculated the uni
versal scaling functionSP(z), in which the percolating prob
ability P(p) is defined in terms of the site number, and th
SP(z) agrees with ours very well after rescaling an over
factor. Based on the above results, we therefore conc
that by choosing the metric factors of random lattices a
their duals properly, we can extend the universal sca
functions of regular lattices to random lattices.

VI. SUMMARY AND CONCLUSION

We have extensively studied the bond-percolation proc
in periodic planar random lattices and their duals. Consid
ing that the distribution functions of the derivative of th
existence probability with respect to the occupied probabi
can be thought as the Gaussian distribution function, we
timate the percolation thresholds and the critical exponenn
by studying the peak and the standard deviation of the

FIG. 16. The scaled results ofF(x)5Ep
v(G,p) as a function of

x5D1(p2pc)L
1/n for a square lattice (h), a planar random lattice

(D), the dual of a planar random lattice (1), the result of Hu
~dashed curve!, and the fitting~solid curve!.
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tribution functions in finite systems. Then we apply finit
size scaling theory to the percolating probability, the me
cluster size, the mean cluster size distribution, and the siz
a percolating cluster to determine the critical exponentsD, t,
b, andg. The finite-size scaling behaviors of the percolati
probability, the existence probability, and the mean clus
size are also examined. The results we obtained are sum
rized below.

~1! From the results of the percolating probabilitie
P(p,L), and the existence probabilitiesEp(p,L), we can see
that the coordination number of a lattice plays an essen
role in the occurrence of percolation, and homogeneity
hances the occurrence of percolations.

FIG. 17. The scaled results ofSP(z)5D3P(G,p)/L2b/n as a
function of z5D2(p2pc)L

1/n for a square lattice (h), a planar
random lattice (D), the dual of a planar random (1), and the fitting
~solid curve!.

FIG. 18. The scaled results ofSS(z8)5D38S(G,p)/L2b/n as a
function of z85D28(p2pc)L

1/n for a square lattice (h), a planar
random lattice (D), the dual of a planar random lattice (1), and the
fitting ~solid curve!.
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~2! We use the finite-size scalingDL
X}L21/n, with X

5U, A, and I, to estimate the critical exponentsn of the
correlation length. The results ofn of regular lattices and
random lattices agree with each other.

~3! We take the theoretical prediction valuen54/3 to
estimate the percolation thresholdpc from our simulation
data, and the results arepc50.333360.0001 for planar ran-
dom lattices, andpc50.667060.0001 for the duals of the
planar random lattices. Here the error barDpc of the thresh-
old is obtained from the largest values ofupc

A2pc
I u and upc

A

2pc
Uu. The shift-to-width ratio„pc

X(L)2pc…/DL
X is a constant

value22.0 for the three different types of lattices we stu
ied. This indicates that the universal value of the shift-
width ratio can be extended to planar random lattices
their duals.

~4! Our percolation thresholds are consistent with the t
known relations. One is the relationpc(L`)1pc(L`

d )51 for
an infinite latticeL` and its dualL`

d ; and the other is the
critical value hc of the effective coordination numberhc

5 z̄pc , which is a constant value 2. From these two re
tions, we conjecture that the exact percolation threshol
1/3 for planar random lattices, and 2/3 for the duals of pla
random lattices.

~5! Using the finite-size scaling theory we determine t
, J

.

A

-
-
d

o

-
is
r

exponents,D, t, b, andg. By taking the possible errors into
account, our results strongly indicate that bond-percolat
processes on planar random lattices and their duals have
same critical exponents as the processes on regular latti

~6! By choosing five nonuniversal factorsD1 , D2 , D3 ,
D28 , and D38 properly for planar random lattices and the
duals, we show that the scaling functions of the percolat
probability P(p,L), the existence probabilityEp

v(p,L), and
the mean cluster sizeS(p,L) for planar regular lattices can
be extended to planar random lattices and their duals.

These results strongly indicate that in the domain of
critical phenomena, except for providing the continuous
tation symmetry, random lattices do not change the criti
phenomena of the system.
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