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Outline

@ Evidence for dark matter

@ Finding dark matter
@ Direct detection
@ Indirect detection
@ Production at colliders

© Modelling dark matter

e Dark energy
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@ Evidence for dark matter
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Celestial mechanics

Stellar/galactic dynamics relates:
@ The mass distribution
(inferred from brightness)

@ Kinetic energy
(inferred from Doppler shifts)
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Collisions of galaxy clusters

Artist’s rendering (Image: NASA)

red = gas (from x-ray observations)
blue = (dark) matter distribution (from gravitational lensing)
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Collisions of galaxy clusters

Image: NASA (Chandra [x-ray], ESO WFI [lensing], HST [optical])

red = gas (from x-ray observations)
blue = (dark) matter distribution (from gravitational lensing)
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The Cosmic Microwave Background (CMB)

WMAP’s observation of the CMB: A fingerprint of the universe
at t ~ 300000 yrs
(when electrons and protons first combined to form atoms).

red = overdense, hot regions (0. .. + 200 pK)
blue = underdense, cold regions (—200...0 uK)

Image credit: NASA
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The Cosmic Microwave Background (CMB)

WMAP’s observation of the CMB: A fingerprint of the universe
at t ~ 300000 yrs

(when electrons and protons first combined to form atoms).

More useful: The CMB fluctuation power spectrum

Image credit: NASA
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The Cosmic Microwave Background (CMB) V4

WMAP’s observation of the CMB: A fingerprint of the universe
at t ~ 300000 yrs

(when electrons and protons first combined to form atoms).
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red curve = theory prediction Image credit: NASA
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The Cosmic Microwave Background (CMB)

WMAP’s observation of the CMB: A fingerprint of the universe
at t ~ 300000 yrs

(when electrons and protons first combined to form atoms).

Ar y (deg)

too little DM (0.04p;) right amount of DM
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(0.22p.) too much DM (0.74p.)

Image credit: NASA
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What is this stuff?

@ Modified laws of gravity?
» Hard to explain all observations
@ MACHOs (Massive Compact Halo Objects)?
» Planets, Brown dwarfs, neutron stars, . ..
» Ruled out as dark matter in the mass range 0.6 x 10~"M, < M < 15M;, by
searches for gravitational microlensing
» Searches for candidate objects yield too few of them
@ Hot (relativistic) Dark Matter (neutrinos or other relativistic particles)?
» Cannot explain large scale structure of the universe
(hot dark matter would smoothen the galaxy distribution)

@ Cold or Warm Dark Matter

» Axions
* Ultra-light, but non-relativistic due to non-thermal production

» Gravitinos
* Only gravitational couplings — bad for direct/indirect/collider detection

» WIMPs (Weakly Interacting Massive Particle)
* New, heavy, stable particles
* Should have some non-gravitational interaction with SM particles for production

in the early universe
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Outline

@ Finding dark matter
@ Direct detection
@ Indirect detection
@ Production at colliders
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@ Finding dark matter
@ Direct detection
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Direct Dark Matter detection

Idea: A WIMP (Weakly Interacting Massive Particle) can scatter
on an atomic nucleus.

—
X X
f f

Strategy: Look for feeble nuclear recoil

Problem: Many background processes (radioactive decays, cosmic rays, .. .)
can mimic the signal
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Direct DM detection — The experimental challenge
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Direct DM detection — The experimental challenge

background
—-
suppression
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Direct detection results
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CRESST-I, arXiv:1109.0702

Assumptions here: Elastic DM scattering o target mass (often realized in SUSY)
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Direct detection phenomenology of alternative models

@ Previous slide: Elastic dark matter () scattering through scalar current

[(@g)(xx)] or vector current [(gv,.9)(x7"x)] assumed
= Cross section « target mass

@ In models with different coupling structure, the relative detection
efficiencies of different experimental technologies may be different
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Direct detection phenomenology of alternative models

@ Spin-dependent couplings
» E.g. coupling through axial vector current [(Gv*v°q)(x7,.7°x)]
» Cross section « target spin
» Cannot explain DAMA, CoGeNT, CRESST results
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Direct detection phenomenology of alternative models

@ Spin-dependent couplings
» E.g. coupling through axial vector current [(Gv*v°q)(x7,.7°x)]
» Cross section « target spin
» Cannot explain DAMA, CoGeNT, CRESST results

@ Inelastic dark matter tucker-smin weiner nep-pio101138
» There may be two DM states x and x’ with m}, = m,, + 6 (5 ~ 100 keV)

» Scattering xN — x’N = heavy target nuclei kinematically preferred
» Could explain CRESST, but not DAMA u schwetz zupan 1110.2721

1o iDM, 6=90keV

%<
AN RERE "+
_ %\ \%, Limits: 90%
A‘EU 10°% \é \ Contours: 90%, 30 |
s \
5
=4
2
*ﬁ 10-3|
S
§ 10-®}
T
2
d
Z 109
2
Vo = 220 KM/, Vesc = 550 km/s

41
10 30 40 50

m, [GeV]

Joachim Kopp Dark Matter and Dark Energy



Direct detection phenomenology of alternative models

@ Spin-dependent couplings
» E.g. coupling through axial vector current [(Gv*v°q)(x7,.7°x)]
» Cross section « target spin
» Cannot explain DAMA, CoGeNT, CRESST results

@ Inelastic dark matter fucer-smith weiner hep-ph/0101138

» There may be two DM states x and x’ with m}, = m,, + 6 (5 ~ 100 keV)
» Scattering xN — x’N = heavy target nuclei kinematically preferred
» Could explain CRESST, but not DAMA u schwetz zupan 1110.2721

@ Leptophilic dark matter sermanei et al. 0712.0562; Fox Poppitz ariv:0811.0399; JK Niro Schwetz Zupan arXiv:0907.3159
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Direct detection phenomenology of alternative models

@ Spin-dependent couplings
» E.g. coupling through axial vector current [(Gv*v°q)(x7,.7°x)]
» Cross section « target spin
» Cannot explain DAMA, CoGeNT, CRESST results

@ Inelastic dark matter fucer-smith weiner hep-ph/0101138

» There may be two DM states x and x’ with m}, = m,, + 6 (5 ~ 100 keV)
» Scattering xN — x’N = heavy target nuclei kinematically preferred
» Could explain CRESST, but not DAMA u schwetz zupan 1110.2721

@ Leptophilic dark matter sermanei et al. 0712.0562; Fox Poppitz ariv:0811.0399; JK Niro Schwetz Zupan arXiv:0907.3159
o Isospin—violating dark matter reng kumar Martatia sanford 11024331
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Direct detection phenomenology of alternative models

@ Spin-dependent couplings
» E.g. coupling through axial vector current [(Gv*v°q)(x7,.7°x)]
» Cross section « target spin
» Cannot explain DAMA, CoGeNT, CRESST results

@ Inelastic dark matter fucer-smith weiner hep-ph/0101138

» There may be two DM states x and x’ with m}, = m,, + 6 (5 ~ 100 keV)
» Scattering xN — x’N = heavy target nuclei kinematically preferred
» Could explain CRESST, but not DAMA u schwetz zupan 1110.2721

(] Leptophilic dark matter sernaveieta. 0712.0562; Fox Poppitz arXiv:0811.0399; JK Niro Schwetz Zupan arXiv:0907.3159
o Isospin—violating dark matter reng kumar Martatia sanford 11024331
o ...

Conclusion: Hard to explain all data simultaneously
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Direct detection uncertainties

@ Large uncertainty in local DM density
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Direct detection uncertainties

@ Large uncertainty in local DM density

@ Large uncertainties in DM velocity distribution
» Scattering rate depends strongly on DM velocity
» DM streams?
» Debris flow?

Maxwell-Boltzmann Debris Flows Streams
Y Y
3 +
—
.- s (T
2 v
V, v, \Z

Feelly Virialized < > Not Virialized

Kuhlen Lisanti Spergel arXiv:1202.0007, graphics courtesy of Mariangela Lisanti
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Direct detection uncertainties

@ Large uncertainty in local DM density
@ Large uncertainties in DM velocity distribution
» Scattering rate depends strongly on DM velocity
» DM streams?
» Debris flow?
@ Predicting WIMP—nucleus cross sections is difficult
» Models predict WIMP—quark cross section
» Need to know quark content of the nucleon
» Especially problematic for Higgs-mediated scattering:
coupling o< quark mass =- sea quarks dominate
» Need to know nuclear form factor
especially difficult for spin-dependent scattering

Joachim Kopp Dark Matter and Dark Energy 15



Outline

@ Finding dark matter

@ Indirect detection
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Indirect Dark Matter detection

Idea: WIMPs (Weakly Interacting Massive Particles) x can annihilate
(or decay) into Standard Model particles (f) in an astrophysical environment.

X X

Strategy: Look for annihilation products in cosmic rays

Problems:

@ Many other sources of cosmic rays

@ Propagation of charged particles in the galaxy poorly understood
Advantage:

@ Many sources to look at

Joachim Kopp Dark Matter and Dark Energy 17



Indirect DM detection — The experimental challenge
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Indirect DM detection — The experimental challenge

look at
many sources
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Indirect DM detection — The experimental challenge

look at
many sources
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look at
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Indirect DM detection — The experimental challenge

look at
many sources
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Indirect DM detection — The experimental challenge

look at
many sources
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Indirect DM detection — Examples

~-rays from dwarf galaxies

Idea:
Look for anomalous ~-ray flux
Pro:
Few stars = few backgrounds
Con:
@ Relatively low DM density
@ Results model-dependent

@ Large astrophysical
uncertainties

Joachim Kopp




Indirect DM detection — Examples

~-rays from dwarf galaxies

Idea:
107 ) Upper limits, Joint Likehh‘ood of 10 dSphs
vy RRRrE=— Look for anomalous ~-ray flux
— b Channel ... W* W~ Channel
_107F -- T T Channel Pro
.-cQ Fermi-LAT 11'08.3545 X
E ol see also Geringer-Sameth Koushiappas 1108.2‘9‘.1>4‘_,.- ) FeW StarS = feW backgl’our‘lds
5l . Con:
o 10 .
I e ' @ Relatively low DM density
RV
S S - _ : @ Results model-dependent
..... Thermal relic cross section
107 => Correct relic abundance Y Large aStrOphySiC&'
o WIMP masslt)éevl o’ UﬂCeI’talntleS

Joachim Kopp Dark Matter and Dark Energy



Indirect DM detection — Examples

~-rays from dwarf galaxies

Idea:
102 i Upper limits, Joint Likehh‘ood of 10 dSphs
T30 75~ Channel Look for anomalous ~-ray flux
— b Channel ... W* W~ Channel
_ 0% -- T T Channel Pro
2 Fermi-LAT 1108.3546
E ol see also Geringer-Sameth Koushiappas 1108.2‘9‘%?&‘_,.- ) FeW StarS = feW backgl’ounds
§ ol ; Con:
I s @ Relatively low DM density
L ol
S S - _ : @ Results model-dependent
..... Thermal relic cross section
107 => Correct relic abundance Y Large astrophysical
o WIMP masslt)éeV] o’ UﬂCertalntleS

Other indirect DM searches:
@ Cosmic anti-matter (€™, P, ...) raveLa Femi-taT,...
@ v-rays from the galactic center roopereta.
@ High-energy neutrinos from the Sun icecuve, superkamiokande
° ...
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Outline

@ Finding dark matter

@ Production at colliders
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Dark matter at colliders
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Dark matter at colliders

make your

own needles!

Joachim Kopp Dark Matter and Dark Energy
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Generic collider searches for dark matter

Idea:
@ Produce WIMPs in collisions of Standard Model particles

X X
t
f f
@ WIMPs can recoil against a jet or a photon from initial state radiation
X X X X
t 9 t gl
q q e~ et

@ Experimental signatures: Mono-jets + £ and mono-photons + £

Joachim Kopp Dark Matter and Dark Energy
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LHC limits on DM—quark couplings

WIMP-nucleon cross section oy [cm?]

107

10737t
10738 L
107391
10-40L
10—41 L
10-42[
10~43L
10744 L
10745 L

ATLAS 7TeV, 1fb™* VeryHighPt

Solid: Observed " 90% CL

Spin-independent

107t 10° 10t 10% 10°

WIMP massm, [GeV]

@ Assumptions here:

» Effective field theory approach valid (limits may be better or worse if EFT not valid)
» Equal coupling to all quark flavors

@ Extremely competitive limits for
» Light dark matter (below direct detection threshold)
» DM coupled to gluons (high gluon luminosity at the LHC)
» Spin-dependent DM interactions (DD suffers from loss of coherence)

Joachim Kopp Dark Matter and Dark Energy

WIMP-nucleon cross section oy [cm?]

ATLAS 7TeV, 1fb™* VeryHighPt

10-38

10739

Solid : Observed
10-3} Dashed : Expected

90% C.L.

Spin—dependent

100 100 102 10°
WIMP massm, [GeV]

Plots from Fox Harnik JK Tsai 1109.4398
see also work by Rajaraman et al. 1108.1196
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Model-dependent collider searches: SUSY-DM

Idea:

@ In many models, DM is produced in the decay of heavy, strongly
interacting particles (for instance squarks and gluinos in SUSY)

@ Experimental signature: something + missing energy
e Example: pp — (§ — jZx°)( — jWX°)

@ Advantage: Very sensitive

@ Problem:
Minor modifications to the model

may drastically change the phenomenology

@ Problem (all collider searches):
Collider can only find DM candidate(s)

Joachim Kopp Dark Matter and Dark Energy
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Outline

© Modelling dark matter
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Electroweak-scale DM? — The “WIMP Miracle”

@ In the early universe, DM is in chemical equilibrium with other particles.

Joachim Kopp Dark Matter and Dark Energy
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Electroweak-scale DM? — The “WIMP Miracle”

@ In the early universe, DM is in chemical equilibrium with other particles.
@ As the temperature drops, DM begins to annihilate away: yx — ff
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Electroweak-scale DM? — The “WIMP Miracle”

@ In the early universe, DM is in chemical equilibrium with other particles.

@ As the temperature drops, DM begins to annihilate away: yx — ff

@ When the annihilation rate '(xx — ff) drops below the Hubble expansion
rate H, annihilations cease
= DM abundance remains constant (“thermal freeze-out”)
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Electroweak-scale DM? — The “WIMP Miracle”

@ In the early universe, DM is in chemical equilibrium with other particles.

@ As the temperature drops, DM begins to annihilate away: yx — ff

@ When the annihilation rate I'(xx — ff) drops below the Hubble expansion
rate H, annihilations cease
= DM abundance remains constant (“thermal freeze-out”)

@ From this requirement, and from the observed DM abundance today,
cosmology predicts the DM annihilation cross section

(ov) ~3x 107 % cm?/s
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Electroweak-scale DM? — The “WIMP Miracle”

@ In the early universe, DM is in chemical equilibrium with other particles.

@ As the temperature drops, DM begins to annihilate away: yx — ff

@ When the annihilation rate I'(xx — ff) drops below the Hubble expansion
rate H, annihilations cease
= DM abundance remains constant (“thermal freeze-out”)

@ From this requirement, and from the observed DM abundance today,
cosmology predicts the DM annihilation cross section

(ov) ~3x 107 % cm?/s X f X /
@ Consider generic DM coupling: — e
9 o\
£ 5 2 (X)) (Ff) v P X ;

M2
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Electroweak-scale DM? — The “WIMP Miracle”

@ In the early universe, DM is in chemical equilibrium with other particles.

@ As the temperature drops, DM begins to annihilate away: yx — ff

@ When the annihilation rate I'(xx — ff) drops below the Hubble expansion
rate H, annihilations cease
= DM abundance remains constant (“thermal freeze-out”)

@ From this requirement, and from the observed DM abundance today,
cosmology predicts the DM annihilation cross section

(ov) ~3 x 107 cm®/s * / !
@ Consider generic DM coupling: — e
9 o\
£5 1@ x / X

@ For typical coupling g ~ 0.1, suppression scale M ~ 100 GeV, DM mass
m, ~ 100 GeV, this yields the right value for (ov)
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Electroweak-scale DM? — The “WIMP Miracle”

In the early universe, DM is in chemical equilibrium with other particles.
As the temperature drops, DM begins to annihilate away: yx — ff

When the annihilation rate I'(yx — ff) drops below the Hubble expansion
rate H, annihilations cease

= DM abundance remains constant (“thermal freeze-out”)

From this requirement, and from the observed DM abundance today,
cosmology predicts the DM annihilation cross section

(ov) ~3 x 107 cm®/s * / !
Consider generic DM coupling: — e
9 o\
£y (RO X / X

For typical coupling g ~ 0.1, suppression scale M ~ 100 GeV, DM mass
m, ~ 100 GeV, this yields the right value for (ov) -3
Conclusion: If dark matter originates from electroweak-scale
new physics, it automatically has the right abundance

The Wimp Miracle
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Relating the DM and baryon abundances

@ Motivation: The DM and baryon energy densities in the universe
are similar

QDM ~ SQb

(© = energy density as fraction of “critical density” for flat universe)
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Relating the DM and baryon abundances

@ Motivation: The DM and baryon energy densities in the universe
are similar

QDM ~ SQb

(© = energy density as fraction of “critical density” for flat universe)
@ If the DM and baryon number densities are similar and

Mpm ~ 5mpy—=10mp, ~ 5-10 GeV,

this is quite natural.
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Relating the DM and baryon abundances

@ Motivation: The DM and baryon energy densities in the universe
are similar

QDM ~ SQb

(© = energy density as fraction of “critical density” for flat universe)
@ If the DM and baryon number densities are similar and

Mpm ~ 5mpy—=10mp, ~ 5-10 GeV,

this is quite natural.

@ This is precisely the mass range where the direct detection hints
(DAMA, CoGeNT, CRESST) have been observed!
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Relating the DM and baryon abundances

@ Motivation: The DM and baryon energy densities in the universe
are similar

QDM ~ SQb

(© = energy density as fraction of “critical density” for flat universe)
@ If the DM and baryon number densities are similar and

Mpm ~ 5mpy—=10mp, ~ 5-10 GeV,

this is quite natural.

@ This is precisely the mass range where the direct detection hints
(DAMA, CoGeNT, CRESST) have been observed!

@ Baryon density Q, generated by yet unknown dynamics behind the
particle—antiparticle asymmetry of the universe
(not by thermal freeze-out)
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Relating the DM and baryon abundances

@ Motivation: The DM and baryon energy densities in the universe
are similar

QDM ~ SQb

(© = energy density as fraction of “critical density” for flat universe)
@ If the DM and baryon number densities are similar and

Mpm ~ 5mpy—=10mp, ~ 5-10 GeV,

this is quite natural.

@ This is precisely the mass range where the direct detection hints
(DAMA, CoGeNT, CRESST) have been observed!

@ Baryon density Q, generated by yet unknown dynamics behind the
particle—antiparticle asymmetry of the universe
(not by thermal freeze-out)

@ Assume dark matter () density is also determined by y—y asymmetry
= Asymmetric dark matter

Joachim Kopp Dark Matter and Dark Energy
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Models of asymmetric dark matter

Exam p le 1 Kaplan Luty Zurek, arXiv:0901.4117

@ B — L asymmetry generated at
high T (e.g. via Leptogenesis)

@ Effective superfield operator

1 -
LD MX2LHU *)
transfers B — L «— 2X, e.g. via

@ Final X (DM number) asymmetry
depends on # of SM species
contributing to (*) at freeze-out

v

Joachim Kopp Dark Matter and Dark Energy



Models of asymmetric dark matter

Example 1

@ B — L asymmetry generated at
high T (e.g. via Leptogenesis)
@ Effective superfield operator

Kaplan Luty Zurek, arXiv:0901.4117

1 -

LD MXQLHU *)

transfers B — L «— 2X, e.g. via
X X

@ Final X (DM number) asymmetry
depends on # of SM species
contributing to (*) at freeze-out

v

Buckley Randall 1009.0270
Blennow et al. 1009.3159

Example 2

@ Generate X asymmetry in
hidden sector
@ Transfer to B — L asymmetry in
the SM sector
via B — L violating
interactions (e.g. (*))
via sphaleron processes

Joachim Kopp

Dark Matter and Dark Energy
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Models of asymmetric dark matter

Example 1

@ B — L asymmetry generated at
high T (e.g. via Leptogenesis)

@ Effective superfield operator

Kaplan Luty Zurek, arXiv:0901.4117

1 -

LD MXZLHU *)

transfers B — L «— 2X, e.g. via
X X

@ Final X (DM number) asymmetry
depends on # of SM species
contributing to (*) at freeze-out

Buckley Randall 1009.0270
Blennow et al. 1009.3159

Example 2

@ Generate X asymmetry in
hidden sector
@ Transfer to B — L asymmetry in
the SM sector
via B — L violating
interactions (e.g. (*))
via sphaleron processes

Davoudiasl et al. 1008.2399
Gu Lindner Sarkar Zhang 1009.2690

Example 3
@ New heavy particles decay
partly into DM, partly into SM
particles
@ B— L — Xis conserved
@ DM (X) does not participate in

SM sphaleron processes
= Asymmetry frozen in

Joachim Kopp

Dark Matter and Dark Energy
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Outline

° Dark energy
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Evidence for dark energy: Type la Supernovae

@ When a white dwarf accretes matter from a
companion star, it becomes unstable
once it reaches ~ 1.4M;
» Re-ignition of nuclear fusion
» Thermonuclear explosion
@ Since the progenitor mass is always ~ 1.4Mg,
all Type la Supernovae are very similar
» Energy release precisely known
» SN la are standard candles
@ Measurement:
» Apparent brightness — distance

Distant Type la Supernovae
http://hyperphysics.phy-astr.gsu.edu/hbase/astro/univacc.html

For empty T

universe p=0 1

25

gz

» Redshift — velocity

@ Result:

» Long ago (very distant SN la,
low brightness), the universe was
expanding more slowly
than we thought!

» It must be accelerating

@ CMB and Large Scale Structure
observations confirm this

Joachim Kopp Dark Matter and Dark Energy

Observed Magnitude

| Best fit of
current data

Accelerating
Universe

Decelerating
Universe

TN
For critical
density 3

# High-Z Supernova
Search
Supernova Cosmalogy
Project

04

06

Redshift z

0.8

0.7

1
0.6 0.5

Linear scale of the universe relative to today
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What is accelerating the Universe?

@ A cosmological constant?
» An ad-hoc addition to the Einstein equations

1
R.. — Egm,F?aa =87G T + 9\

» Observations require A ~ (10~ "2 GeV)*
» Extra source of energy with negative pressure

Joachim Kopp Dark Matter and Dark Energy 31



What is accelerating the Universe?

@ A cosmological constant?
» An ad-hoc addition to the Einstein equations

1
R. — Egm,F?a“ =87G T + 9\

» Observations require A ~ (1072 GeV)*
» Extra source of energy with negative pressure
@ QFT vacuum energy?
» A vacuum expectation value (vev) or condensate of a quantum field
behaves like a cosmological constant
» Problem: All known condensates/vevs are way too large!
(We expect A ~ Mg ~ (10'° GeV)*)

Joachim Kopp Dark Matter and Dark Energy 31



What is accelerating the Universe? (cont'd)
@ Quintessence: A new, slowly rolling scalar field
» Introduce new scalar field ¢ slowly rolling down its potential V(¢)

» Lagrangian:

Lo = 20,60"0 — V(0)

» Energy and pressure:

_ 1 1
p=5¢+V(®), p=5¢" V()

» A cosmological constant corresponds to p = —p = require ¢> < V(¢)

v \Y

J I\

Q | Q

for a review see Caldwell Kamionkowski 0903.0866

Joachim Kopp Dark Matter and Dark Energy
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What is accelerating the Universe? (cont'd)

@ Quintessence: A new, slowly rolling scalar field
» Introduce new scalar field ¢ slowly rolling down its potential V(¢)
» Lagrangian:

Lo = 20,60"0 — V(0)

» Energy and pressure:

1 1
p= §¢ + V(4), p= §¢ V(o)

» A cosmological constant corresponds to p = —p = require ¢> < V(¢)
@ Extensions of general relativity
» Scalar-tensor gravity: Modified Einstein-Hilbert action

1

_ 4 _ 1 — 4
S—16WG/\/—gde — 8_7_‘6#6/\/ gd'xf(¢) xR

» A special case: f(R) gravity:

_ 1 — 4
s_@/\/ gd*xf(R)

for a review see Caldwell Kamionkowski 0903.0866

Joachim Kopp Dark Matter and Dark Energy
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Summary

@ Overwhelming evidence for dark matter

@ Alot of data available
» Direct detection
* Difficult to reconcile possible evidence with null results
» Indirect searches

* Strong exclusion limits
* Suffers from poorly understood astrophysical backgrounds

» Collider searches
* Generic searches (monojets + £, mono-vy + £) and model-specific searches
(cascade decays) are underway full-steam
@ Dark matter models
» Dark matter from electroweak scale new physics:
Correct cosmic abundance due to WIMP Miracle
» Light (10 GeV) dark matter:
Correct cosmic abundance if related to baryon—antibaryon asymmetry

@ Dark energy
» Accelerated expansion of the Universe well-established
» So far, a cosmological constant is the leading explanation

Joachim Kopp Dark Matter and Dark Energy
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Thank you!



Bonus material



Spin-dependent DM couplings?

@ Previous slide: Dark matter (x) couplings through scalar current
[(@g)(xx)] or vector current [(gv,.9)(x7"x)] assumed
= Cross section « target mass

@ Alternative: Axial vector [(gv"~°q)(1,~°x)] interaction
= Cross section  target spin

Lo

T
|

T
|

T
|

104 tul T
10

102 10* PICASSO arXiv:1202.1240
WIMP mass (GeV/é) : .

Note: CoGeNT & CRESST have very low sensitivity to spin-dependent DM scattering.
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Inelastic dark matter? Tucker-Smith Wener hp-ghD101138
Idea: There may be two DM states x and x’ with

My =m, +6
Scattering proceeds via

X+N—=xX+N

@ Modified kinematics compared to elastic scattering
@ Affects different target nuclei differently

Joachim Kopp Dark Matter and Dark Energy
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Inelastic dark matter?

Tucker-Smith Weiner hep-ph/0101138

Idea: There may be two DM states x and x’ with

My =m, +6

H
Q
g

S
8

8

10™

WIMP-nucleon cross section og [cm?]

L= iDM, 5=90keV
\-. % Limits: 90%
L1 Contours: 90%, 30 |
\

Vo = 220 km/s, Veg: = 550 km/s

40 50
m, [GeV]

plot from JK Schwetz Zupan 1110.2721
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ISOSpi n'ViOIati ng dark matter? Feng Kumar Marfatia Sanford 1102.4331

Idea: Dark matter could couple differently to protons and neutrons
= Detection efficiencies of different target materials change

-1

10 T T T T T r_A
O .
\ .
\F
) &

10 4
< F s :
N ]

F ]

10°E \/ E

-4 | | ! | | |
1017 1 08 206

f /f
nop plot from JK Schwetz Zupan 1110.2721
fn, f,: DM couplings to protons and neutrons
Ae: Effective nuclear mass for DM scattering
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Isospin-violating dark matter?

Idea: Dark matter could couple differently to protons and neutrons
= Detection efficiencies of different target materials change

L)
‘-\ IVDM, fy/fp=—0.7
— A Limits: 90%
€ 109} ) R |
S \ Contours. 90%, 30
5§ 10%L
5 10730k
c
3
2
—40 |
4 10
2
=
10—41 L i
0 =220 KM/, Vese = 550 km/s
10t 107 10°
m, [GeV]

plot from JK Schwetz Zupan 1110.2721
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Leptophilic dark matter? UK Niro Schwe Supa o207 3159

Idea: DM could couple only to leptons at tree level
@ DAMA and CoGeNT do not reject electron-recoils as background
@ But: Electron recoils above threshold (> 1 keV) strongly suppressed
(electron needs large initial momentum — probe high-p tail of wave functions)

1076 =

1078 =

._.
S
&

P X [ev]
5

P ()P [ev]
8

10712 L

g
5

1004} 107141

1071

107
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Leptophilic dark matter? K Nt S s oy g

Idea: DM could couple only to leptons at tree level
@ DAMA and CoGeNT do not reject electron-recoils as background
@ But: Electron recoils above threshold (> 1 keV) strongly suppressed
@ Thus: DM-nucleus scattering dominates, even if loop-induced
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Leptophilic dark matter? K Nt S s oy

Idea: DM could couple only to leptons at tree level
@ DAMA and CoGeNT do not reject electron-recoils as background
@ But: Electron recoils above threshold (> 1 keV) strongly suppressed
@ Thus: DM—nucleus scattering dominates, even if loop-induced
@ But: Loop diagrams forbidden for some models
e.g. axial vector couplings g2 /M? (.5 x)(Fy*sf)
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Leptophilic dark matter?

Idea: DM could couple only to leptons at tree level
@ DAMA and CoGeNT do not reject electron-recoils as background
@ But: Electron recoils above threshold (> 1 keV) strongly suppressed
@ Thus: DM—nucleus scattering dominates, even if loop-induced
@ But: Loop diagrams forbidden for some models

@ Problems then:

Fox Poppitz arXiv:0811.0399

JK Niro Schwetz Zupan arXiv:0907.3159

» Very large couplings needed to compensate wave function suppression
» Poor fit to DAMA and CoGeNT energy spectra

0.06

0.04

0.00

Sy ld kg™ keV]

-0.04-

Joachim Kopp

0.02

.
— 00 =5.x10"" cm?, m,, = 816. GeV

-0.021

\ ]
i x?*=559
|
L= 09=5.01x107%" em?, my, = 202. GeV |7
}\& X =206

Ui

\l\lﬁhrﬂ Er atrr gl

HH T I

w/o 13! bin ]

Full analysis

5 10 15
E [keV]
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Indirect DM detection — where to look

The Galactic Center

Pros:
@ Highest DM density
Cons:
@ DM distribution uncertain
@ Many background sources

v
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Indirect DM detection — where to look

The Galactic Center

Pros:
@ Highest DM density
Cons:
@ DM distribution uncertain
@ Many background sources

Dwarf Galaxies

Pros:
@ Few backgrounds
Cons:
@ Relatively low DM density
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Indirect DM detection — where to look

The Galactic Center

Pros:
@ Highest DM density
Cons:
@ DM distribution uncertain
@ Many background sources

4

Dwarf Galaxies

102

Upper limits, Joint Likelihood of 10 dSphs

102

107

WIMP cross section [cm® /s]

5

- et

— b Channel o W'W Channel

3*107 =+ 707 Channel
-- TT Channel

Fermi-LAT 1108.3546 =
see also Geringer-Sameth Koushiappas 1108.2914 .-

" Theneralaietiiccess sectiom
=> Correct relic abundance

Pros:

10! 10% 10°
WIMP mass [GeV]

Fermi-LAT, 1108.3546
see also Geringer-Sameth Koushiappas 1108.2914

@ Few backgrounds

Cons:

@ Relatively low DM density
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Indirect DM detection — where to look (2)

Cosmic antimatter

Pros:

@ Few background sources
Cons:

@ Backgrounds uncertain

@ Propagation of charged
particle has large uncertainties

@ Non-directional

v
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Indirect DM detection — where to look (2)

Cosmic antimatter

V1509 - o)

. Postion fracin, (e

0
zzzzz =

PAMELA collaboration, 0810.4995
Pros:
@ Few background sources
Cons:
@ Backgrounds uncertain

@ Propagation of charged
particle has large uncertainties

@ Non-directional

v
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Indirect DM detection — where to look (2)

Cosmic antimatter

)19l - ol

Posivon racton, (e

0
zzzzz =Y

PAMELA collaboration, 0810.4995

Pros:

@ Few background sources
Cons:

@ Backgrounds uncertain

@ Propagation of charged
particle has large uncertainties

@ Non-directional

High-energy neutrinos

Idea:
@ DM capture/annihilation in the Sun
@ Flux dominated by capture rate
Pros:
@ Few backgrounds
Cons:
@ Low neutrino cross sections

Joachim Kopp Dark Matter and Dark Energy
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Indirect DM detection — where to look (2)

Cosmic antimatter

04

Posivon racton, 6(e")/ ¢(0%) - 9o )

o MASSE
© Muller & Tang 19675%

0 107
Energy (GeV)

PAMELA collaboration, 0810.4995
Pros:
@ Few background sources
Cons:
@ Backgrounds uncertain

@ Propagation of charged
particle has large uncertainties

@ Non-directional

High-energy neutrinos

10 10 10°

9 ot
Neutralino mass (GeV)

IceCube collaboration, 1111.2738

Idea:

@ DM capture/annihilation in the Sun

@ Flux dominated by capture rate
Pros:

@ Few backgrounds
Cons:

@ Low neutrino cross sections
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What is a sphaleron?

@ SU(2) gauge field vacuum configurations are classified according to their

winding number (or Chern-Simons number)

Ind,(zg) =1 Ind, () = -1 Ind,(zy) =0

1 ! 3 v
NCS*W/Odt/d XtI’Fl“,F @

Ind,(z) = +1 Ind,(z0) = +2

Configurations with different winding number cannot be continuously
transformed into each other.
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What is a sphaleron?

@ SU(2) gauge field vacuum configurations are classified according to their
winding number (or Chern-Simons number) Ngs = 1o fotdtfdsxtr F,. Fr

@ Sphalerons are processes (with E > 0) that change the winding number
Their energy is of order my, the symmetry breaking scale (100 GeV)
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What is a sphaleron?

@ SU(2) gauge field vacuum configurations are classified according to their
winding number (or Chern-Simons number) Ngg = 1617 f()tdtfd3xtr FWIN-_“”
@ Sphalerons are processes (with E > 0) that change the winding number

@ In the SM, a change in winding number corresponds to a change in
B+ L. In fact, considering only left-handed (SU(2),-charged) fermions:

JpiL = Z 7/17 (1=

wqe

A change in B + L is equivalent to a change in Ngg:

o / Pxjg,, = / #x 15#%“7% (since 9,0~ = 0)

— 1671'2 /d3xtrF Frv (chiral anomaly)

= —0tNcs % N W@ﬂ
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