Modeling of AtmospheriC CHemIstry
And Transport
from the global tO the local scales


Numerical modelling of chemical processes in the atmosphere is essential to increase our understanding of atmospheric composition and its changes induced by human activity. In recent years, global-scale atmospheric models that calculate the concentration and processing of trace constituents in the atmosphere have been developed. However, for key problems like local air quality, (long-range) transport from local sources and the detailed interpretation of chemical measurements the development of high-resolution models is essential. Proper initial and boundary conditions also for chemical variables must be consistently provided in order to run high-resolution limited-area chemistry models. For the first time, we propose to develop and employ such a model that is driven by consistent meteorological and chemical fields. This will be achieved through coupling of the global ECHAM5/MESSy system with the COSMO Model. First applications of the newly developed model COSMO/MESSy will serve to investigate its capabilities for (i) a detailed analysis of field measurements, (ii) the direct simulation of mesoscale chemical perturbations like dust and biomass burning plumes, and (iii) an assessment and eventually forecast of local air quality. On the medium-term, the novel tool, developed jointly within research organisations, will be made available for chemical weather forecasting.

The MACCHIATO project is founded by the Deutsche Forschungsgesellschaft (DFG, German Science Foundation). The Proposal can be made available. If you are interested send me an e-mail.


This page was last modified on 24 Apr 2008.
If you have comments or suggestions, write me an e-mail !