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Abstract

We study the longtime behaviour of interacting systems in a randomly fluctuating (space–
time) medium and focus on models from population genetics. There are two prototypes of spa-
tial models in population genetics: spatial branching processes and interacting Fisher–Wright
diffusions. Quite a bit is known on spatial branching processes where the local branching rate
is proportional to a random environment (catalytic medium).

Here we introduce a model of interacting Fisher–Wright diffusions where the local resam-
pling rate (or genetic drift) is proportional to a catalytic medium. For a particular choice of
the medium, we investigate the longtime behaviour in the case of nearest neighbour migration
on the d–dimensional lattice.

While in classical homogeneous systems the longtime behaviour exhibits a dichotomy along
the transience/recurrence properties of the migration, now a more complicated behaviour
arises. It turns out that resampling models in catalytic media show phenomena that are new
even compared with branching in catalytic medium.
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1 Introduction

This paper is concerned with evolutions in disordered media where the medium fluctuates both in
space and time. We focus on spatial models arising in population genetics.

An object of study in spatial population genetics is a class of stochastic models where on each
site of a certain countable set G there is a population of one or more types. The mass and/or
relative frequency of the types undergoes a local stochastic evolution that models effects such as
genetic drift due to resampling, population growth with limited/unlimited resources, competition
of two types for limited resources and so on. In addition spatial models comprise a migration
between colonies.

The prototype for a one–type population growth model with unlimited resources is branch-
ing random walk as well as its diffusion limit, the Dawson–Watanabe process (see, e.g., Dawson
[Daw93]). The most widely studied two–type model with a fixed population size (at any site) and
a genetic drift due to haploid resampling is that of interacting Fisher–Wright diffusions (see, e.g.,
Shiga [Shi80], Ethier and Kurtz [EK86], Fleischmann and Greven [FG96]).

In the last years there has been some interest in models where the local diffusion mechanism
is influenced by a random medium that is itself a realization of a spatial stochastic process. The
best studied model is a spatial branching process where the local branching rate is proportional
to the local abundance of a second type which performs an autonomous branching process leading
to catalytic branching random walks (see [GKW99]) and catalytic super–Brownian motion (see
Dawson and Fleischmann [DF97a] and [DF97b]). Recently also branching models with two types
and with a mutual influence have been studied; this is the so called mutually catalytic branching
(Dawson and Perkins [DP98]). For an overview on catalytic spatial branching processes we refer
to the survey article by one of the authors [Kle00b].

In this paper we introduce a model of interacting Fisher–Wright diffusions where the resampling
rate (or strength of the genetic drift) is proportional to a random medium that varies in time and
space. The main goal is the investigation of the longtime behaviour. To this end we concentrate on
the d–dimensional lattice as site space and on the medium given by the voter model, which is tech-
nically better treatable than a medium of interacting diffusions, but closely resembles interacting
Fisher–Wright diffusions.

Recall the following properties of the longtime behaviour in the classical case of a space–time
homogeneous resampling rate (say for nearest–neighbour migration). Starting in an i.d.d. (or
spatially ergodic) random initial state the system of interacting Fisher–Wright diffusions (and
similarly the voter model) approaches a non–trivial ergodic equilibrium state as t → ∞ if d ≥ 3.
On the other hand, for d = 1, 2 the system approaches a mixture of δ–masses on the traps 0 and 1 of
the system. One way of understanding this is the following. The migration has a smoothing effect
which drives the local frequencies of the types towards their mean value, whereas the fluctuations
caused by the resampling push the components towards the traps 0 and 1. For far reaching
interaction (transient migration) the migration wins in this competition, while for short range
interaction (recurrent migration) the fluctuations win.

In the random medium things are different. We shall see that in our model in low dimension the
new phenomenon occurs that both mechanisms can win with certain probabilities. This is a feature
unparallelled by catalytic branching. High dimensions (d ≥ 3) hide no surprise: as in catalytic
branching, the systems behave qualitatively like their classical homogeneous counterparts.

The low dimensions d = 1 and especially d = 2 are more challenging. In these dimensions
we find as longtime limits of the law of the reactant component mixtures of laws concentrated
on traps and on spatially constant states different from the traps. We are able to calculate the
probabilities of these two possibilities and to give transparent formulas for the limiting joint law of
medium and reactant. The situation in d = 1 parallels the case of catalytic branching in d = 2 (see
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[GKW99]): the limiting state of the reactant is a process with random intensity where the random
factor reflects global properties of the medium and is expressed in terms of the

√
t-rescaling limit

of the model.
Finally, the type of behaviour in dimension d = 2 is deviant from any known behaviour of

catalytic branching. Like for catalytic branching, in the longtime limit we see a random multiple
of the counting measure. Howeverm, it is not derived by a rescaling limit of the whole process. It
rather arises from a multiple–scale observation of the catalyst process.

Many results of this paper can be carried over easily to a reactant process describing multi–
type and infinite–type situations, as interacting multi–dimensional Fisher–Wright diffusions or
interacting Fleming–Viot processes.

Some words on the methods used. The starting point is the duality relation connecting the
reactant with coalescing random walk in a fluctuating medium. To obtain precise results we exploit
the cluster analysis of the voter model. In dimension d = 1 Arratia’s rescaled voter model ([Arr79],
[Arr81]) is the key ingredient for the quantitative description of the longtime behaviour. In d = 2
there is diffusive clustering of the voter model (see Cox and Griffeath [CG86], and also [Kle96]) and
we employ the multiple scale description of this form of cluster formation to derive an intriguing
formula for the longtime limit of our model.

This paper is part of a framework to investigate catalytic spatial models where the diffusion
coefficient (genetic drift) is of a more general type (diploid resampling, e.g.). The corresponding
non–catalytic models could be related to models of the Fisher–Wright type by using a comparison
theory (see Cox, Fleischmann and Greven [CFG96]). This theory will be developed for the catalytic
models in a forthcoming paper.

1.1 The Models and Basic Tools

We want to define the model in some generality first and concentrate on a special situation later
once we come to the longtime behaviour.

Let G be a countable Abelian group and let B be the generator (q–matrix) of a continuous time
random walk on G. Denote by bt = exp(tB) is transition probabilities at time t ≥ 0. We assume
that we are given a bounded measurable function

κ : G× [0,∞)→ [0,∞).

This function serves as the space–time medium of our model. For the moment it is deterministic
but will be chosen to be random later. We need in the sequel the notion of a standard Fisher–Wright
diffusion.

Definition 1.1 A standard Fisher–Wright diffusion is the solution (with values in [0, 1]) of the
following SDE:

dYt =
√

Yt(1 − Yt)dWt. (1.1)

The following proposition has been proved by Shiga and Shimizu ([SS80], Remark 2.1 and
Theorem 3.2) for κ(g, t) not depending on t.

Proposition 1.2 There exists a unique strong solution (ξt)t≥0 of the following system of inter-
acting stochastic differential equations

dξt(g) = (Bξt)(g) dt +
√

κ(g, t)ξt(g)(1− ξt(g)) dWt(g), g ∈ G, (1.2)

where {(Wt(g))t≥0, g ∈ G} is a family of independent standard Brownian motions.
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Proof The proof of the existence has two components. First we have to show that there exists
a solution of this system for a finite index set. Shiga and Shimizu achieve this in their setting by
referring to a result of Skorokhod. In the time–inhomogeneous setting, this can be replaced, e.g.
by [RW87] Thm. V 23.5, guaranteeing a solution to the corresponding martingale problem and
hence also a weak solution to the SDE (cf. [RW87] Thm. V 20.1). Based on this result one can
use the technique developed in [SS80] to construct a solution for the system with countably many
components. In addition their proof of strong uniqueness based on Gronwall’s inequality carries
over. Since existence of a weak solution together with strong uniqueness implies the existence of a
strong solution, we obtain the existence and uniqueness results for time inhomogeneous κ. 2

Definition 1.3 (CIFWD) We call the solution (ξt)t≥0 of (1.2) a system of interacting Fisher–
Wright diffusions in the catalytic medium κ and with migration kernel B (and write CIFWD(B, κ)
for short). We also refer to (ξt)t≥0 as the reactant.

The main tool in the analysis of CIFWD is a duality to coalescing random walks with varying
rate of coalescence. This kind of duality is well known for the homogeneous model (κ ≡ 1). We
state the duality here and begin with introducing the dual process. We denote by Nf (G) the set
of finite, non–negative integer valued measures on G. For µ ∈ Nf (G) and x ∈ [0,∞)G we define

xµ := exp
( ∫

log(x(g)) µ(dg)
)
, (1.3)

where xµ can be zero.

Definition 1.4 (Coalescing random walk in the catalytic medium) Fix T > 0 and let

(X̃T
t )t∈[0,T ] be a system of coalescing random walks with local rate of coalescence κT−t(g) at time

t at site g. This is, X̃T is the Markov process that takes values in Nf (G) with time–dependent
infinitesimal generator acting on bounded functions F : G→ R as follows:

GT,tF (x) =
∑

g,h∈G

x(g)B(g, h)F (x + δh − δg) +
∑

g∈G

(
x(g)

2

)
κT−t(g)[F (x− δg)− F (x)]. (1.4)

More intuitively, the particles of X̃T perform independent random walks with generator B and pairs
of particles at the same site g at time t coalesce at rate κT−t(g).

Proposition 1.5 (Duality) For fixed κ, T ≥ 0 and ϕ ∈ Nf (G)

Eξ0 [(ξT )ϕ] = Eϕ[ξX̃T
0 ]. (1.5)

Proof For the piecewise (in time) constant medium this follows as in [Shi80], Lemma 2.3. The
general case follows by an approximation. 2

The construction of the process works for a broad class of media. However the longtime
behaviour of the model depends in a subtle way on the medium. In order to obtain precise results
we have to make specific choices here. In the sequel we shall consider the special situation where
also κ is random and is generated by an autonomous Markovian evolution which we call the
catalyst. In this case we consider the process which corresponds to the pair (catalyst, reactant).
Precisely

Definition 1.6 Let (κ(·, t))t≥0 be a Markov process and define for given realization of (κ(·, t))t≥0

the process (ξt)t≥0 by Definition 1.3. The process (κ(·, t), ξt)t≥0 is called the bivariate process.
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In order to achieve a concise presentation we will specialise in the sequel and make the following

Assumption G = Z
d and B is the q–matrix of nearest neighbour random walk. We also assume

that κ = η is a realization of a (nearest neighbour) voter model on Z
d.

Recall that the voter model (ηt)t≥0 is the Markov process with values in {0, 1}Zd

where in each
coordinate i ∈ Z

d a flip to 1 − ηt−(i) occurs at a rate proportional to the number of neighbours
j with |j − i| = 1 such that ηt−(i) 6= ηt−(j). For details see [Lig85, Chapter V] or [Dur88,
Chapters 2 and 10]. The voter model can be thought of as the limit of (homogeneous) IFWD
where the resampling rate tends to infinity. Its duality is the same as the one for IFWD but now
the coalescence of two walks is instantly.

Remark 1.7 To distinguish conceptually between the random walks underlying the reactant and
our voter medium, we write A for the q–matrix of nearest neighbour random walk on Z

d whenever
it is associated to the voter model η. We also denote the transition kernels by at = exp(tA).

The main content of this paper is to investigate the longtime behaviour of the IFWD in this
medium η. The natural choice for the medium seems to be (classical) interacting Fisher–Wright
diffusions. The reason for choosing the voter model instead is that it produces less technical
difficulties in places. On the other hand, in many respects the voter model shows a similar behaviour
as IFWD. Hence the hope seems justified that we capture essential features by choosing the voter
model as the medium.

1.2 Results

We investigate the longtime behaviour of the model and give convergence theorems for the joint
distribution of the medium and the reactant. Due to the very different nature of dimension one,
two and d ≥ 3 we give the results in different subsections. We begin with the case closest to the
classical situation and then proceed to the new features subsequently.

1.2.1 Dimensions Three and More

The longtime behaviour in d ≥ 3 is very similar to that of space–time homogeneous systems. We
consider for the process (ηt, ξt)t≥0 the following class of initial laws.

Denote by P(({0, 1} × [0, 1])Z
d

) the space of probability measures on ({0, 1} × [0, 1])Z
d

and by
T ⊂ P the subset of translation invariant measures. For (θ1, θ2) ∈ [0, 1]2 define the class of initial
states with asymptotic intensity (θ1, θ2) by

M(θ1,θ2) = {µ ∈ T : lim sup
t→∞

∫
µ(d(η, ξ))(|atη(i)− θ1|+ |btξ(i)− θ2|) = 0, i ∈ Z

d}. (1.6)

Note that in particular translation invariant, spatially ergodic configurations with mean (θ1, θ2)
are in this class.

The main result in the high dimensional case is:

Theorem 1 Assume that d ≥ 3.

(a) For every intensity (θ2, θ2) ∈ [0, 1]2 there exists a unique extremal invariant measure ν(θ1,θ2)

of the bivariate process such that
∫

νθ1,θ2(d(η, ξ))

(
η(0)

ξ(0)

)
=

(
θ1

θ2

)
. (1.7)
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The measure νθ1,θ2 has the following properties

− νθ1,θ2 is translation invariant and spatially ergodic. (1.8)

− Varνθ1,θ2 [ξ(0)] > 0 provided θ1 > 0 and θ2 ∈ (0, 1).

(b) If we choose µ ∈ M(θ1,θ2), and if we denote by P(θ1,θ2) the law of the stationary bivariate
process with marginal νθ1,θ2 , then

Lµ
[
(ηt+T , ξt+T )t≥0

]
T→∞
=⇒ P(θ1,θ2). (1.9)

The law P(θ1,θ2) is space–time mixing.

Remark 1.8 The statements of Theorem 1 remain true even in a situation of much greater gen-
erality. In fact, our proof works without changes for a countable Abelian group G and the case
where the (possibly different) migration kernels of catalyst and reactant have transient symmetri-
sations. One can even replace the catalyst by some translation invariant random medium that
follows a Markovian dynamics on [0,∞)G and approaches a non–trivial equilibrium. (In partic-
ular, we can take interacting Fisher–Wright diffusions as the medium, cf. the remark at the end
of Subsection 1.1) Focusing only on (1.9) we can replace the Markovian process by a space–time
mixing stationary process. We chose the formulation of the special case in Theorem 1 only to be
consistent with the following theorems for the low–dimensional situation where we have to be more
specific.

1.2.2 Dimension Two

A principal role in our main result for the two–dimensional case is played by the solution p(·) of
the following Dirichlet problem (for existence and uniqueness see Lemma 1.13 below):

Definition 1.9 We define the twice continously differentiable map p : [0, 1]→ [0, 1] as the solution
of

d2

dθ2
p(θ) = −2

p(θ)(1− p(θ))

θ(1 − θ)
, θ ∈ (0, 1) (1.10)

with the boundary conditions
p(0) = 0, p(1) = 1. (1.11)

Let Y 1 and Y 2 be independent standard Fisher–Wright diffusions started at θ1 and θ2. Denote

by λ the counting measure on Z
2. We write πθ for the product measure on {0, 1}Zd

and πθ for an

arbitrary but fixed product measure on [0, 1]Z
d

with intensity θ ∈ [0, 1], respectively. Our main
result is:

Theorem 2 Assume d = 2. Then

Lπθ1
⊗πθ2 [(ηt, ξt)]

t→∞
=⇒ Lθ1,θ2

[
(Y 1
∞ · λ, Y 2∫

∞

0
p(Y 1

s )ds · λ)
]
. (1.12)

Remark 1.10 With mθ1,θ2 = Pθ1,θ2

[
Y 2∫

∞

0
p(Y 1

s )ds ∈ •|Y 1
∞ = 0

]
the r.h.s. of (1.12) equals

θ1(θ2δ(1,1) + (1− θ2)δ(1,0)) + (1− θ1)

∫
δ(0,θ))mθ1,θ2(dθ).

This means that for the reactant we see both constant states θ with θ(g) ≡ θ ∈ (0, 1) produced by
a dominating migration, and constant states 0 or 1 which are traps produced by the dominance of
fluctuations.
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Remark 1.11 Presumably the initial state πθ1 ⊗ πθ2 could be replaced by more general elements
ofMθ1,θ2 without changing the result; we do not strive for this generalisation here.

In order to understand why the theorem should be true let us give an idea of the proof here. We
start by explaining the function p(·). To this end we need to introduce binary branching Fisher–
Wright diffusions first, which allow a probabilistic representation of p(·). Recall also that every
element of the set Nf ([0, 1]) of finite, integer valued measures on [0, 1] can be viewed in an obvious
way as empirical measure of a collection of particles.

Definition 1.12 Let (Zs) be rate 1 binary branching Fisher–Wright diffusions. This is, (Zs) is the
Markov process with values in Nf ([0, 1]) where each particle undergoes a standard Fisher–Wright
diffusion and with rate 1 splits into two particles at the same location undergoing the same (but
independent) dynamics.

The connection of p with Z is given by the following lemma that we prove in Subsection 3.4.

Lemma 1.13 Equation (1.10) with boundary conditions (1.11) is uniquely solvable and

p(θ) = lim
t→∞

Pδθ [Zt({1}) > 0] = lim
t→∞

Pδθ [Zt((0, 1]) > 0].

The basis for the phenomenon described in the theorem is the following property of the medium
(voter model). For the medium (ηt)t≥0 it is well known that the configuration forms big clusters
(i.e. connected components) of zeros and ones as t→∞ and it is even possible to determine how
these clusters grow. In fact, they follow a pattern of diffusive clustering, which means that the
sizes of clusters of 0’s or 1’s are of order tα/2 with a random exponent α. More precisely, we know
that the block averages converge in the following scaling

Lπθ [(t−αηt([0, tα/2]2))α∈[0,1]]
t→∞
=⇒
fdd
Lθ[(Y 1

− log α)α∈[0,1]]. (1.13)

For given medium the reactant has a dual process and we compute m–th moments of the
reactant, first for given medium, via this duality (see Proposition 1.5), and later we average over
the medium. Hence we have to start m random walks at time t and let them run backwards
in time through the medium. On a logarithmic scale with α ∈ [0, 1] as parameter the times
tα when pairs of the random walks meet form a point process with intensity α−1dα times the
number of remaining pairs. We show (Proposition 3.3), that if a pair meets it has a probability
≈ p(̺) to coalesce, where ̺ = t−αηt−tα([0, tα/2]2), which is approximated via (1.13) by Y 1

− log α.

This means at time texp(−s), as t → ∞, the total rate of coalescence is ≈
(

ms

2

)
p(Y 1

s ) with ms

being the number of remaining particles. Hence for large t the number of surviving particles is
distributed approximately as Kingman’s coalescent (Dm

s )s≥0 started with Dm
0 = m and evaluated

at time
∫∞
0

p(Y 1
s )ds. (Kingman’s coalescent is the pure death process on N with rates

(
m
2

)
for the

transitions m 7→ m−1.) Finally, Kingman’s coalescent is connected to the Fisher–Wright diffusion
by the following well known duality, leading to the time transformed Y 2 of Proposition 1.15.

Lemma 1.14 (Duality: Fisher–Wright diffusion) For all m ∈ N, θ ∈ [0, 1] and s ≥ 0,

Eθ[(Ys)
m] = Em[θDs ]. (1.14)

This discussion already suggests that the result can be viewed also as a limit result for coalescing
random walk in random medium. Indeed we will show Theorem 2 by proving the following rescaling
result for the joint law of the medium and of the reactant’s dual process.
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Proposition 1.15 Fix m, n ∈ N and x1, . . . , xm, y1, . . . , yn ∈ Z
2. Let (X̃t

s)s∈[0,t] be coalescing

random walk in the medium η, started at time t with X̃t
0 = δx1 + . . .+ δxm. For all z ∈ {0, 1}n and

k ≤ m,

lim
t→∞

Pπθ [ηt(yi) = zi, i = 1, . . . , n; X̃t
t (Z

2) = k] = P
[
Y 1
∞ = z1; Dm∫

∞

0
p(Y 1

s )ds = k
]1z1=...=zn .

Note that together with the duality (Proposition 1.5 and Lemma 1.14) this implies immediately
Theorem 2.

1.2.3 Dimension One

A key point for the investigation of our process in dimension d = 1 is that it has a natural scaling
limit. More precisely, if we scale time by T and space by T 1/2 we obtain a limiting process
(η∞t , ξ∞t )t≥0. The law L[(η∞1 , ξ∞1 )] will be the ingredient for a quantitative description of the
longtime behaviour of the non–rescaled process in analogy to the previous theorems.

Let us start by considering the medium. The interfaces between the zeros and ones perform
annihilating random walks. On the Brownian scaling they converge to annihilating Brownian
motions. Arratia seems to have been the first who showed this convergence in the sense of an
invariance principle. More precisely, there should exist an entrance law (denoted by Lθ1) for a
Markov process (η∞t )t>0 (note the problem arising at t = 0!) where, for each fixed t, η∞t is piece-
wise constant (in space) with values in {0, 1}, the discontinuities of (η∞t )t>0 perform annihilating
Brownian motions, and

Lπθ1 [((ηTt(⌊T 1/2•⌋)))t>0]
T→∞
=⇒ Lθ1 [(η∞t (•))t>0]. (1.15)

Since Arratia’s proof is a bit difficult to spot, we give an argument for (1.15) in Proposition 4.1.
We will refer to η∞ as “Arratia medium”.

It is reasonable to conjecture that also the rescaled bivariate process converges and that, given
η∞, the limit ξ∞ is the solution of the following formal SPDE

d

dt
ξ∞t (x) =

1

2

d2

dx2
ξ∞t (x) +∞ · η∞t (x)

√
ξ∞t (x)(1 − ξ∞t (x))

•
W(t, x), (1.16)

where
•
W is space–time white noise. The factor “∞” should be understood in the sense that ξ∞

is the limit of ξK as K → ∞ where the ∞ is replaced by a factor K (in particular ∞ηt(x) = 0
if ηt(x) = 0). This would be an SPDE of the Mueller–Tribe type [MT95, Thm. 2] in a catalytic
medium. However, the existence of a solution of (1.16) has not been established yet.

What we can show here is for given medium the existence of some process ξ∞ that is given in
terms of its mixed (space–time) moments

E(θ1,θ2)

[
m∏

i=1

ξ∞ti
(xi)

∣∣η∞
]

= Eθ1 [θ
|{W̃1(xi), i=1,...,m}|
2

∣∣η∞]. (1.17)

Here the space–time dual process ((W̃s(xi))s∈[0,1], i = 1, . . . , m) is a family of modified coalescing
Brownian motions: they are frozen at xi for s ≤ 1 − ti and a pair coalesces at the first instance
s ≥ (1 − ti) ∨ (1 − tj) with W̃s(xi) = W̃s(xj) and η∞1−s(W̃s(xi)) = 1. If (1.16) does make sense
then the moments of its solution are given by (1.17). In fact, the existence of a process obeying
(1.17) follows easily by the standard Kolmogorov extension theorem, and since the law depends
measurably on η, we arrive at:
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Remark 1.16 Let θ1, θ2 ∈ [0, 1]. There exists a bivariate Markov process (η∞, ξ∞) with values
in {0, 1}R × [0, 1]R, where η∞ is the Arratia medium and where the moments of ξ∞ given η∞ are
prescribed by (1.17). If x is a continuity point of η∞t (•), then the map x 7→ ξ∞t (x) is continuous
at x if η∞t (x) = 0. If η∞t (x) = 1 then ξt(x) ∈ {0, 1}.

Theorem 3 Let θ1, θ2 ∈ [0, 1]. Fix m ∈ N and (xi, ti) ∈ R × [0,∞), i = 1, . . . , m. Assume that

we are given sequences (xi
T , tiT )T≥0 such that (T−1/2xi

T , T−1tiT )
T→∞−→ (xi, ti). Then

Lπθ1
⊗πθ2

[(
(ηti

T
(xi

T ), ξti
T
(xi

T )
)

i=1,...,m

] T→∞
=⇒ L(θ1,θ2)

[(
η∞ti (xi), ξ∞ti (xi)

)
i=1,...,m

]
. (1.18)

Remark 1.17 Letting mθ1,θ2 = L[ξ∞1 (0) ∈ •|η∞1 (0) = 0] we have

L[(ηt, ξt)]
t→∞
=⇒ θ1(θ2δ(1,1) + (1− θ2)δ(1,0)) + (1− θ1)

∫ 1

0

δ(0,θ)mθ1,θ2(dθ). (1.19)

Remark 1.18 Let us mention that also Theorem 3 could be extended to a more general class of
initial states (as described in Remark 1.11).

Remark 1.19 In [GKW99, Thm. 3] it was shown that the reactant of two–dimensional catalytic
branching random walk (CBRW) converges to a homogeneous Poisson point process with random
intensity. This randomness could be described in terms of the density of catalytic super–Brownian
motion (see [FK99, Thm. 1] or [Kle00a, Thm. 1]) which is the scaling limit of CBRW. In this
respect the case of one–dimensional IFWD is similar to that two–dimensional CBRW.

The result of Theorem 3 raises the question whether its statement could be strengthened such
that we could view (ηTt(

√
T•), ξTt(

√
T •)) as elements of a function space like D([0,∞), {0, 1})×

D([0,∞), [0, 1]) or whether we can show convergence in path space (in the time variable).
Start with the evolution at a space point in time. The first observation is that the maps

t 7→ ξt(⌊x
√

T ⌋), t 7→ ξ∞t (x) (1.20)

do not have the same continuity properties: the first is continuous, the second may have jumps if
η∞t (x) = 1. Hence pathwise convergence cannot hold in the Skorokhod topology. If, however, we
consider the measures on R with density functions ξt(⌊

√
T•⌋) on R then we conjecture that one

has the pathwise convergence.
The problem with considering the system for fixed time as element of a function space is

two–fold. First of all at points where η∞t (·) changes values the random variable ξ∞t (·) has no
regularity properties and is of complicated nature so that different type function spaces have to
be considered. Secondly it is an open problem to verify that a classical one–dimensional system of
Fisher–Wright diffusions shows under the

√
T - rescaling as a random function in space the same

qualitative limiting behaviour as a voter model.
Thus here are serious open problems which are intimately connected with the question which

sense can be given to the equation (1.16).

1.3 Extensions

There are two extensions of our results, one concerning the migration mechanism and the other
the state space of the reactant process of a component. We describe both extensions shortly.

In this paper we consider very special migration kernels (symmetric nearest neighbour). One is
tempted to believe that the qualitative statements remain true if one assumes only that the kernels
have second moments and vanishing drift. However, the technical difficulties in proving such a
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statement appear to be substantial. At this stage we prefer only to highlight the main features of
the longtime behaviour by analysing the important examples.

However, one interesting case that is simple to discuss is that of a kernel with drift. More
precisely, assume that the migration kernel of the reactant has second moments and a non–zero
drift. Clearly, for d ≥ 3 no qualitative change occurs. In dimension d = 1 and d = 2 the situation
changes drastically. Now also the reactant clusters: For µ ∈ M(θ1,θ2),

Lµ [(ηt, ξt)]
t→∞
=⇒

(
θ1δ1 + (1 − θ1)δ0

)
⊗ (θ2δ1 + (1− θ2)δ0).

This can be understood easily using the duality given in (1.5). Consider pairs of particles of the
coalescing random walk. The difference of two walks is again a random walk, but now without
drift, hence it is recurrent. However, due to the drift, the two random walks explore the medium
with a linear speed. Since in d = 1 the clusters of the voter model are of order t1/2 only, two
coalescing random walks will finally not only meet but meet also in the presence of the medium
and hence coalesce. In d = 2 the diameter of clusters is tα/2 with random α ∈ [0, 1] and hence the
same argument applies.

Another scope for generalisation is to modify the reactant, in particular its state space. Recall
that Fisher–Wright diffusions describe the frequency of one type in a two type population located
at the sites of Z

d. Instead we could consider interacting multitype Fisher–Wright diffusions or
Fleming–Viot processes describing populations with three or more respectively a continuum of
types.

Both these processes have a dual process, which even though it is more complicated, is driven
by the coalescing random walk in random medium analysed in this paper (compare Subsection 3(a)
in [DGV95]). Thus it is clear that in d ≥ 3, i.e. in Theorem 1, nothing changes while in d = 2, i.e.
Theorem 2, we have to replace Y 2 by either a multitype Fisher–Wright diffusion or Fleming–Viot
process. Finally, for d = 1 in Theorem 3 one has to write (1.17) using the duality relation for the
respective one of these processes instead for usual FWD.

2 Proof of Theorem 1 (d ≥ 3)

We give here a proof whose method works for far more general situations than for the special
structure of our present model. Indeed, the behaviour in d ≥ 3 as described here occurs in many
other situations. In particular we could replace, in our choice for the medium, the voter model by
interacting Fisher–Wright diffusions.

The main idea is to use the fact that the medium evolves autonomously towards an ergodic
equilibrium state, which allows to treat it first and then consider the evolution of (ξt)t≥0 for given
medium consisting of realizations of the stationary process (ηt)t∈(−∞,∞). We proceed in steps:
after recalling some basic facts about the medium we consider first convergence results on the
bivariate law for special initial states and then later for general ones. With these we construct in
Step 4 the extremal invariant measures, prove the convergence statement (1.9) and conclude in
Step 5 by showing the claimed mixing properties.

Step 1 Observe first that for initial states ν ∈ M(θ1,θ2) using the projection ν1 on the medium
component as initial state of a voter model leads to the following property ([HL75, Thm. 1.9(c)])
for d ≥ 3:

Lν1 [ηt]
t→∞
=⇒ µθ1 , (2.1)

where µθ1 is the unique extremal invariant measure with intensity θ1. This measure is spatially
mixing. Using the Markov and Feller property it is straightforward to prove the following strength-
ening of the ergodic theorem above:
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Denote by (η̃t)t≥0 the stationary process with marginal µθ1 . Then

Lν1

[
(ηt+T )t≥0

]
T→∞
=⇒ L

[
(η̃t)t≥0

]
. (2.2)

Step 2 We begin by considering the bivariate process starting in the following special initial state
ν ∈ M(θ1,θ2) with ν = ν1 ⊗ πθ2 and ν1 := µθ1 . We start the process in this state at time −t and

denote the configuration arising at time 0 by (η̃−t
0 , ξ̃−t

0 ). We can construct this process as follows.
Realize the stationary process (η̃t)t∈(−∞,∞). Fix a version of this process and an initial state for

the ξ-process, called ξ̂, which is independently sampled from πθ2 . Then we can (simultaneously

for all t) construct the distribution of ξ̃−t
0 for fixed medium η̃ through a coalescing random walk

(X̃s)s≥0 with coalescence rate η̃−s(x) at site x at times s. Consider the coalescing random walk

(X̃s) starting with k particles placed at the (not necessarily different) sites x1, . . . , xk ∈ Z
d. Note

first that due to the monotonicity of the total number of particles X̃t(Z
d) converges to a random

variable ζ∞ whose law depends only on k and η̃. Hence (recall (1.3))

E
[
ξ̃−t
0 (x1) . . . ξ̃−t

0 (xk)|(η̃s)s≤0

]
= Eν

[
ξ̂X̃t

∣∣∣(η̃s)s≤0

]

t→∞−→
k∑

j=1

(θ2)
jPη̃,k [ζ∞ = j] .

(2.3)

Note that from η̃ only the part (η̃s)s≤0 enters in the r.h.s. above, and viewing this part of the

process as element of D((−∞, 0], {0, 1}Zd

) the r.h.s. of (2.3) is a continuous function of η̃, since the
difference random walks (X i

t−Xj
t )t≥0 starting at xi and xj are transient and since the dual process

reads the medium backwards. (In fact, think of X̃ as being constructed from k free random walks
X1, . . . , Xk. If we fix a realization of X1, . . . , Xk it is easy to see that the probability of having j
free particles in the end is a continuous function of η̃. Furthermore, for T > 0 and R > 0 on the
event AT,R :=

⋂
i6=j{X i

t 6= Xj
t if t > T or ‖X i

t‖2 > R} it is even uniformly (in the realizations of

X1, . . . , Xk) continuous in η̃. However due to the transience of the (difference) walks, P[AT,R]→ 1
as T, R→∞.)

As a consequence we can define for every fixed η̃ = (η̃s)s≤0 ∈ D((−∞, 0], {0, 1}Zd

)

νθ2(η̃) = lim
t→∞

Lη̃[ξ̃−t
0 ]. (2.4)

As shown above, the map
η̃ 7→ νθ2(η̃) (2.5)

from the path space D((−∞, 0], {0, 1}Zd

) into P([0, 1]Z
d

) is continuous. Put

νθ1,θ2 :=

∫
(δη̃0
⊗ νθ2(η̃))Qθ1(dη̃), where Qθ1 = L[(η̃s)s≤0]. (2.6)

By construction we have for our special choice of ν that

Lν [(ηt, ξt)] =

∫ (
δη̃0
⊗ Lη̃[ξ̃−t

0 ]
)

Qθ1(dη̃)
t→∞
=⇒ νθ1,θ2 . (2.7)

Note that relation (2.3) implies that (with x1 = x2 = 0)

Varνθ1,θ2 [ξ(0)] =

∫
Qθ1(dη̃)Pη̃,2[ζ∞ = 1]θ2(1− θ2) > 0
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if θ2 ∈ (0, 1). Hence together with the observation of the previous step we have proved the assertion
(1.8) as far as the assertion for the variance goes.

Step 3 We want to show in this step that for all initial laws ν ∈ Mθ1,θ2 the bivariate process
converges as t→∞ to νθ1,θ2 , i.e.,

ν ∈ M(θ1,θ2) implies Lν [(ηt, ξt)]
t→∞
=⇒ νθ1,θ2 . (2.8)

Denote again by ν1 the projection of ν on the medium. It suffices according to Step 2 to show that
the following pairs of initial distributions (i) ν1 ⊗ πθ2 and µθ1 ⊗ πθ2 as well as (ii) ν and ν1 ⊗ πθ2

lead to the same bivariate limits in distribution as t→∞. Next we give these two arguments.

(i) Since ν ∈ Mθ1,θ2 , the measure ν1 has the intensity θ1. Denote by Qν1
t (dη̃) the distribution

of the medium started at time −t with distribution ν1 and set ≡ 0 for times earlier than −t. With

this notation (2.2) becomes Qν1
t

t→∞
=⇒ Qθ1 . Recalling the discussion following (2.3) it is clear that

the convergence in (2.3) is even uniform in η̃. Thus we can interchange limits and replace in (2.7)
Qθ1 by Qν1

t . In total we get for µ = ν1 ⊗ πθ2 that:

Lµ [(ηt, ξt)]
t→∞
=⇒ νθ1,θ2 . (2.9)

(ii) Here we have to compare two initial measures which have the same projection on the medium
component, so that it suffices to compare the two reactant processes evolving in one given medium.
We construct the two processes (ξ1

t )t≥0 and (ξ2
t )t≥0 on one probability space by using for both

the same realization of the medium and the same driving Brownian motions. The initial states
are realized by choosing ξ1

0 according to ν conditioned on the medium and ξ2
0 according to πθ2

independently of everything else. If we can show that

ft(x) = E[|ξ1
t (x) − ξ2

t (x)|] tends to 0 as t→∞, (2.10)

we are done.
Using Itô–calculus we can derive for the collection {ft(x), x ∈ Z

d} a system of differential
equations (recall that A is the q–matrix of simple random walk)

d

dt
ft(x) = Aft(x)

− 2
∑

y

E[|ξ1
t (y)− ξ2

t (y)|; sign(ξ1
t (y)− ξ2

t (y)) 6= sign(ξ1
t (x)− ξ2

t (x))]
(2.11)

By the translation invariance of the law L[ξt], the first term vanishes. Therefore we see im-
mediately that ft(x) is monotone decreasing. The system of equations is derived and analysed in
[CG94], Subsection 3, a paper dealing with interacting diffusions with time–homogeneous diffusion
coefficients. However, we get in our case exactly the same system of equations due to the transla-
tion invariance of the distribution of ξt averaged over the medium. The reason that ft converges
actually to 0 is due to the irreducibility of the migration and the fact that the diffusion term is
mean preserving. The argument is roughly as follows. One shows that equation (2.11) implies that
(ξ1

t , ξ2
t ) must become ordered in the limit t→∞. If they would, however, become at a site strictly

ordered with positive probability, this would contradict the fact that the intensities are preserved
in the limit t → ∞ (which follows from a second moment estimate) and are equal for both of the
two coupled systems. The details of the argument can be found in the reference mentioned above
and the quoted result simply carries over to the inhomogeneous evolution.
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Step 4 Now we need to show that νθ1,θ2 is an invariant measure of the bivariate process. A
straightforward calculation shows that ηt and ξt are both mean preserving and since the components
are bounded this means∫

η(x)νθ1,θ2(d(η, ξ)) = θ1,

∫
ξ(x)νθ1,θ2(d(η, ξ)) = θ2, x ∈ Z

d. (2.12)

A simple second moment calculation (recall (1.6)), separately for ηt and for ξt given (ηs)s≥0 shows
that

νθ1,θ2 ∈ M(θ1,θ2). (2.13)

Since the bivariate process has the Feller property we can now argue as usual. Denote by (St)t≥0

the semigroup of the bivariate process. Then

(νθ1,θ2)St =
(

lim
u→∞

(πθ1 ⊗ πθ2)Su

)
St = lim

u→∞
(πθ1 ⊗ πθ2)St+u = νθ1,θ2 . (2.14)

This invariant measure νθ1,θ2 is obviously translation invariant. Since νθ1,θ2 has intensity (θ1, θ2)
one can use the convergence property given in (2.8) to conclude that νθ1,θ2 is an extremal invariant
measure.

The Markov property of the bivariate process together with the Feller property allow immedi-
ately to conclude from (2.8) the convergence in (1.9).

Step 5 We finally use the duality for ξ and the graphical representation for η to show that νθ1,θ2

is spatially mixing (which is stronger than (2.13)). Start with the first assertion. It suffices to show

lim
|y|→∞

〈νθ1,θ2 , fτyg〉 = 〈νθ1,θ2 , f〉〈νθ1,θ2 , τyg〉 (2.15)

for functions f, g : ({0, 1} × [0, 1])Z
d → [0,∞) that are monomials and that depend only the

coordinates from a finite set A ⊂ Z
d. By τyg we denote the function g shifted by y ∈ Z

d. We use

the representation (2.7) for νθ1,θ2 that allows us to condition on η̃ first and use the duality for ξ̃−t.
In fact,

E[f(η̃0, ξ̃
−t
0 )τyg(η̃0, ξ̃

−t
0 )

∣∣η̃]−E[f(η̃0, ξ̃
−t
0 )

∣∣η̃] · E[τyg(η̃0, ξ̃
−t
0 )

∣∣η̃]

can be bounded in terms of the probability that two random walks, started in A respectively in
y+A, ever meet. Due to the transience of the difference walk, this probability vanishes as |y| → ∞.
Now use that µθ1 is mixing to conclude (2.15).

We argue similarly for the space–time mixing property of the corresponding stationary process.
Her we use space–time observation points A ⊆ R × Z

d, |A| < ∞ and (t, y) + A and we let
|(t, y)| → ∞. We leave the straightforward details to the reader. 2

3 Proof of Theorem 2 (d = 2)

The proof of Theorem 2 is quite involved and uses elaborate techniques such as the multiple scale
analysis of the diffusive clustering of the voter model.

In Subsection 3.1 we fix some notation and formulate a version of the well–known multiple scale
cluster description of the voter model. With a view to the duality of the reactant to coalescing
random walk in the medium η we give in Subsection 3.2 the asymptotics for the probability
that two random walks coalesce. This is the technical core of the proof of Theorem 2. The
generalisation to more than two random walks is carried out in Subsection 3.3 where we proof a
statement (Proposition 3.14) that is slightly stronger than Proposition 1.15, which, in turn, implies
Theorem 2. In Subsection 3.4 we establish that p(·) is uniquely defined by the boundary value
problem (1.10), (1.11).
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3.1 Multiple Scale Analysis of the Voter Model

Recall that for η0 a random initial configuration with intensity θ1, the process (ηt) satisfies in

d = 2 the convergence L[ηt]
t→∞
=⇒ θ1δ1 + (1 − θ1)δ0. In fact, the order of magnitude of a cluster of

0’s or 1’s due to one ancestral voter (see [CG86, Thm. 5]) is known: the cluster–size in space is of
the order tα/2 where α is a random variable with uniform distribution in [0, 1]. The age of such
a cluster is of order tα (see [FG96, Thm. 7]). We need here a finer analysis, in particular, we will
have to investigate the behaviour of the voter–model observed in collections of time–space points
which spread at possibly different polynomial scales. Next we make this precise.

Denote by TN the set of all sequences e with values in {1, 2} of length ℓ(e) ∈ {0, . . . , N}. TN

carries the natural tree structure and we use the usual notation e ∧ f for the greatest common
ancestor of e and f as well as ←−e for the predecessor of e and e←n for the n–th predecessor of e.
Finally, we write ∅ for the root which by convention corresponds to the empty sequence.

Now we analyse the configuration of the voter model in different time–space points which
spread with t (age of the system) on various different scales. We specify next the needed time–
space configurations.

Fix TN and {αe : e ∈ TN}, where αe ∈ [0, 1]. Define βe =
∏

f≤e αf . Assume that for these
parameters for each e ∈ TN we are given families (T e

t )t≥0 of time points T e
t ∼ t, and families

(xe
t )t≥0 of points in Z

2 such that

lim sup
t→∞

log(|T e
t − T f

t |)
log t

≤ βe∧f , e 6= f, (3.1)

and

lim
t→∞

log(|xe
t − xf

t |)
log t

=
βe∧f

2
, e 6= f. (3.2)

Further choose mass scaling functions (Se
t ) such that

lim
t→∞

log Se
t

log t
= βe.

Next we need the objects to describe the behaviour of the voter model as t→∞ viewed on the
grid described above. Let ((Y e

s )s≥0, e ∈ TN ) be a TN -indexed family of Fisher–Wright diffusions
with the following dependence structure

Y e
s = Y f

s for s ≤ − log(βe∧f )

(Y e
s )s≥− log(βe∧f ) and (Y f

s )s≥− log(βe∧f ) are independent, given Y e
− log(βe∧f ).

(3.3)

The following proposition (or rather a slightly weaker version of it) is well known for the hierarchical
group instead of Z

2 as the site space (see [FG94, Thm. 3]) and follows easily as in [FG94] from
results on random walks in Z

2 which can be found in [CG86, Sec. 5 and Thm. 6].

Proposition 3.1 (Diffusive clustering)

Lπθ

[
((Se

t )−1ηT e
t
(xe

t + (Se
t )1/2(•))e∈TN

]
t→∞
=⇒ Lθ[(Y e

− log βe · λ)e∈TN ], (3.4)

where λ denotes the two–dimensional Lebesgue measure, and the configurations ηs are also viewed
as point measures on R

2.
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We focus in the sequel on the situation where Se
t = tβ

e

(log t)4 and denote by Be
t the ball in Z

2

of (Euclidean) radius
√

Se
t centred at xe

t .

The next goal is to strengthen the above statement by showing that asymptotic averages which
are 0 or 1 can be replaced by pure configurations. More precisely, we want to show that the cases
where the Fisher–Wright diffusion (Yt)t≥0 is in its boundary points 0 or 1 reflect in the voter model
the cases where the corresponding balls are completely empty or filled. Denote

Ỹ e
t = |Be

t |−1ηT e
t
(Be

t ).

Proposition 3.2 (“Empty boxes are really empty”) For every z ∈ {0, 1}TN ,

lim
t→∞

Pπθ [Ỹ e
t = ze, e ∈ TN ] = Pθ[Y e

− log βe = ze, e ∈ TN ]. (3.5)

Proof By the previous proposition (and the Portmanteau theorem) it suffices to show that

lim inf
t→∞

Pπθ [Ỹ e
t = ze, e ∈ TN ] ≥ Pθ[Y e

− log βe = ze, e ∈ TN ]. (3.6)

To avoid a blow up of notation, we show this only for N = 0 and z = 0, leaving the obvious
generalisations to the reader.

Abbreviate α = α∅, Y := Y ∅ and w.l.o.g. assume that T ∅t = t. We have to show that (with Bt

the centred ball in Z
2 with radius tα/2(log t)2)

lim inf
t→∞

Pπθ [ηt(Bt) = 0] ≥ Pθ[Y− log α = 0]. (3.7)

To this end fix ε > 0 and δ > 0 such that, α + δ < 1 and

Pθ[Y− log α = 0] ≤ Pθ[Y− log(α+δ) = 0] + ε. (3.8)

Let ({(Xx
s )s≥0, x ∈ Bt},PX) be a (t-dependent) family of coalescing random walks each of which

is started at Xx
0 = x. By the duality of the voter model with coalescing random walk applied

between the time points t− tα+δ and t:

Pπθ [ηt(Bt) = 0] = Pπθ ⊗PX [ηt−tα+δ(Xx
tα+δ ) = 0, ∀ x ∈ Bt]. (3.9)

Now by [BCG86, Theorem 1] (for applications to the voter model see [CG90]), Dt := |{Xx
tα+δ :

x ∈ Bt}| is a random variable which converges in law to D∞log(1+(δ/α)), where ((D∞s )s≥0,P
D) is

Kingman’s coalescent started with infinitely many particles at time 0.
Furthermore, given Dt, the Dt remaining components have positions which are, as t → ∞,

asymptotically independent and distributed as atα+δ , where at denotes the transition kernel of
simple random walk on Z

2.
Return to the proof of (3.7). Express the l.h.s. of this equation using (3.10). Employing the

two facts above we obtain with the previous proposition together with the central limit theorem
for at from (3.8) that

lim inf
t→∞

Pπθ [ηt−tα(Bt) = 0] = lim inf
t→∞

EπθEX [(1 − (atα+δηt−tα+δ )(0))Dt

] (3.10)

= EθED[(1 − Y− log(α+δ))
D∞

log(1+(δ/α)) ]

≥ Pθ[Y− log(α+δ) = 0]

≥ Pθ[Y− log α = 0]− ε.

Since ε > 0 was arbitrary, the claim (3.7) follows. 2
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3.2 Coalescing Random Walk in a Voter Medium: Two Particle Case

Fix the time horizon t. Let p̄t(θ, x1, x2) be the probability that the coalescing random walk X̃T

in the medium, started with two particles at positions x1 and x2, has coalesced by time t. In

this subsection we show that pt(θ, x1, x2)
t→∞−→ p(θ), where p(θ) is the function introduced in

Definition 1.9.
Let (X i

s)s≥0, i = 1, 2 be two independent random walks, started at x1 and x2, and define the
events

B
x1,x2

t =

{∫ t

0

ηt−s(X
1
s )1X1

s =X2
s

ds > 0

}
,

B
x1,x2

t (K) =

{∫ t

0

ηt−s(X
1
s )1X1

s =X2
s

ds > K

}
, K > 0.

(3.11)

Furthermore let
pt(θ, x

1, x2) := Pπθ [Bx1,x2

t ]. (3.12)

Clearly

inf
K>0

lim inf
t→∞

Pπθ [B x1,x2

t (K)] ≤ lim inf
t→∞

p̄t(θ, x1, x2), (3.13)

and

lim sup
t→∞

pt(θ, x1, x2) ≥ lim sup
t→∞

p̄t(θ, x1, x2). (3.14)

We can show

lim sup
t→∞

Pπθ [B x1,x2

t \ B
x1,x2

t (K)] = 0, K > 0. (3.15)

Indeed, this follows from the recurrence of X1
t −X2

t together with the fact that the medium has
the property that for T <∞, C <∞, x ∈ Z

2:

lim
s→∞

Pπθ [ηs−u(y) = 1 ∀u ≤ T, ∀y such that ||x− y||2 ≤ C |ηs(x) = 1] = 1. (3.16)

Hence we have
lim

t→∞
(p̄t(θ, x1, x2)− pt(θ, x1, x2)) = 0 (3.17)

and we can work in the sequel with the function pt instead of p̄t.

The key technical result of this subsection is:

Proposition 3.3
lim

t→∞
pt(θ, x

1, x2) = p(θ).

Proof Since the medium covers as t→∞ arbitrarily large (finite) blocks with either all 0 or all 1, it
suffices to consider pt(θ) instead of pt(θ, x

1, x2) where we used the abbreviation pt(θ) = pt(θ, 0, 0).
We also write B t = B

0,0
t .

The proof consists of several steps. We have to analyse first the structure of the sets of time
points in [0, t] where the two random walks meet, this happens in the first two steps. In the third
step we bring the properties of the medium given in Subsection 3.1 into play and in the fourth step
we show that the probabilistic representations for p(θ) given in Lemma 1.13 are asymptotic lower
and upper bounds respectively for pt(θ).
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Step 1 Note that once the two walks meet, there will be many collisions before they separate for
a longer time again. This behaviour can be captured best by performing a hierarchically structured
multiple–scale analysis.

Recall that we consider the pt(θ) = pt(θ, 0, 0), thus we let X1 and X2 be two independent
random walks that are both started in 0. We have to define the last time before t where the
random walks meet and put it on a logarithmic scale:

At :=
log sup{s < t : X1

s = X2
s }

log t
. (3.18)

Note that
P[At > α] = P[X1

s = X2
s for some s ∈ (tα, t)].

Denote by U [0, 1] the uniform distribution on [0, 1]. The following lemma is one basic ingredient
for the proof of Proposition 3.3.

Lemma 3.4
L[At]

t→∞
=⇒ U [0, 1].

Proof Fix α ∈ (0, 1) and let ε > 0 be arbitrary. We show that lim sup
t→∞

|P[At > α]− (1− α)| ≤ ε.

To this end we localise the most likely relative position of the random walks at time tα. It follows
via the CLT that we can pick c, C ∈ (0,∞) such that

lim inf
t→∞

P[‖X1
tα −X2

tα‖2 ∈ (ctα/2, Ctα/2)] ≥ 1− ε

2
. (3.19)

For the relative positions in the above interval we can use the Erdös–Taylor theorem for simple
random walk (Xs)s≥0 in Z

2, started in t-dependent locations xt ∈ Z
2 (see [ET60, eq. (2.16)] or

[Kle96, Proposition 2.4]):

lim
t→∞

Pxt [Xs hits 0 for some s ∈ [0, t− tα]] = 1− α, (3.20)

uniformly in all sequences (xt) in Z
2 with ‖xt‖2 ∈ (ctα/2, Ctα/2). Now combine (3.19) and (3.20)

to get the conclusion of the lemma. 2

Step 2 In the sequel we condition on At = α for some α ∈ (0, 1). Having fixed At, the difference
walk (X1

s −X2
s )0≤s≤tα is a random walk bridge from 0 to 0 with rate 2.

Consider the two random walks with new time horizon [0, tα] viewed forward respectively viewed
backwards from 0 and tα. Proceeding similarly as above we define for the two endpoints of the
bridge from Step 1:

A1
t =

log sup{s ∈ [0, tα/ log t] : X1
s = X2

s}
α log t

, (3.21)

A2
t =

log sup{s ∈ [0, tα/ log t] : X1
tα−s = X2

tα−s}
α log t

.

The key to our construction is the following independence property:

Lemma 3.5
L

[(
A1

t , A
2
t

)
|At = α

] t→∞
=⇒ U [0, 1]⊗ U [0, 1]. (3.22)
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Z
2

tαα1

tα − tαα2

tα t

Figure Sketch of the difference of two random walks

Proof The point is that the random variables A1
t , A

2
t depend on a time span which is small

compared to the time span defining the bridge of the difference random walk. We leave the details
of the argument to the reader. 2

By the procedure preceding (3.21) the bridge has been split into two independent (given A1
t = α1

and A2
t = α2 asymptotically as t→∞) bridges

(X1
s −X2

s )s∈[0,tα·α1 ] (3.23)

and
(X1

s −X2
s )s∈[tα−tα·α2 ,tα]. (3.24)

This construction has the property:

lim sup
t→∞

P[X1
s = X2

s for some s ∈ [tα·α
1

, tα − tα·α
2

]
∣∣At = α, A1

t = α1, A2
t = α2] = 0. (3.25)

Indeed by definition X1
s 6= X2

s for s ∈ [tαα1

, tα/ log t] ∪ [tα − tα/ log t, t − tαα2

]. Since by
Lemma 3.5 the limiting distributions of A1

t and A2
t (as t → ∞) do not have atoms at 1, we may

assume α1, α2 < 1, thus (tα/ log t)− tααi ∼ tα/ log t, i = 1, 2. This implies that

‖X1
tα/ log t −X2

tα/ log t‖2 ∼ (tα/ log t)1/2.

The Erdös–Taylor lemma now yields that with high probability also X1
s 6= X2

s for s ∈ [tα/ log t, tα−
tα/ log t].

Next iterate this procedure N times, to obtain thereby 2N (asymptotically as t→∞) indepen-
dent bridges. We index these bridges by e ∈ {1, 2}N . The bridges of “generations” ≤ N are then
indexed by the tree TN . The bridge e starts at a time testart and ends at a time teend. The lifetime
telife equals teend − testart. Analogously to (3.21) we write

Ae
t =

log telife
log t

←−e life
.

Iterating the argument of Lemma 3.5 we get
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Lemma 3.6 L[(Ae
t , e ∈ TN )]

t→∞
=⇒ U [0, 1]⊗TN .

In the arguments later on we condition on {Ae
t = αe : e ∈ TN} for some numbers αe ∈ (0, 1) and

we write
βe =

∏

f≤e

αf , e ∈ TN . (3.26)

Thus telife = tβ
e

, e ∈ TN . Note that we have for e, f ∈ TN :
∣∣testart − tfstart

∣∣ ∼ (tβ
e∧f

), e ∧ f 6∈ {e, f}, (3.27)

and ∣∣X1
te
start
−X1

tf
start

∣∣ ∼ tβ
e∧f /2, e ∧ f 6∈ {e, f}. (3.28)

Step 3 In order to handle the influence of the medium on all of the 2N bridges simultaneously
we have to appeal to the corresponding multiple scale analysis of the two–dimensional voter model
combined with properties of the range of random walk.

Denote by B̃e
t the ball of radius

√
telife log t centred at X1

te
start

. With probability tending to one

the bridge e stays in B̃e
t during its lifetime. What we show next is that with high probability the

medium is 0 (respectively 1) for all time–space points in [testart, t
e
end]× B̃e

t given that ηte
start

(x) = 0

for all x ∈ Be
t (respectively 1). Recall that Be

t has radius
√

tβe(log t)2.

Lemma 3.7 For z ∈ {0, 1},
lim

t→∞
Pπθ [ηs(x) 6= z for some x ∈ B̃e

t and s ∈ [testart, t
e
end]

∣∣ηte
start
≡ z on Be

t ] = 0. (3.29)

Proof W.l.o.g. we may assume z = 0. We use the duality of the voter model (see the description
below Definition 1.6). In fact we need an extended version of this duality for the time–space

process. Consider a collection {(Xx,s
t )t∈[te

start,s]
, x ∈ B̃e

t , s ∈ [testart, t
e
end]} of (instantly) coalescing

random walks running backwards in time. The walk Xx,s is started at time s in x. The extended
duality says in our context that

P
[
sup

{
ηs(x), s ∈ [testart, t

e
end], x ∈ B̃e

t

}
6= 0

∣∣ηte
start

]

= P
[
sup

{
ηte

start
(Xs,x

te
start

), s ∈ [testart, t
e
end], x ∈ B̃e

t

}
6= 0

∣∣ηte
start

].
(3.30)

See [CG83] for a derivation. The uncountably many random walks coalesce immediately to a
finite random number of particles. Furthermore this random number (by scaling) is of order

O(telife|B̃e
t |) = O((telife log t)2). It suffices therefore to show that the probability for one of these

particles to be in (Be
t )c at time testart is uniformly O(t−3).

Note that for simple random walk (Xs) on Z we have

E[eλXs ] = cosh(λ)s, λ > 0, s > 0.

Choose λ = s−1/2 and use Chebyshev’s inequality to get for r > 0:

P[Xs ≥ r] = P[eλXs ≥ eλr] (3.31)

≤ e−λr cosh(λ)s

≤ e−1/2e−r/
√

s.

Coming back to our problem we see that (choosing r =
√

Se
t = (telife)

1/2(log t)2 and s = telife) for
any of the random walks the probability to be at time testart in (Be

t )c is smaller than 4 exp(−(log t)2).
Thus we have established Lemma 3.7. 2
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Combining Lemma 3.7 with Proposition 3.2 we get the following statement:

Corollary 3.8 For every z ∈ {0, 1}Tn

lim inf
t→∞

Pπθ
[
ηs(x) = ze for all x ∈ B̃e

t and s ∈ [testart, t
e
end]

]
≥ Pθ[Y e

− log βe = ze]. (3.32)

Since two walks coalesce with very high probability if they meet in a cluster of 1’s of the medium
that is of size Be

t we easily derive the following proposition.

Lemma 3.9 For every fixed N ∈ N the following estimates hold:

lim sup
t→∞

Pπθ [B t

∣∣Ae
t = αe, e ∈ TN ] ≤ 1−Pθ[Y e

− log βe = 0 for all e ∈ {1, 2}N ]

lim inf
t→∞

Pπθ [B t

∣∣Ae
t = αe, e ∈ TN ] ≥ Pθ[Y e

− log βe = 1 for some e ∈ {1, 2}N ].
(3.33)

Step 4 Finally, we derive the formula for lim
t→∞

Pπθ [B t].

Recall Definition 1.12 of the process Zt started with one particle at θ. We stop the evolution of
each particle once the N -th generation is reached. Denote by ZN the random population of these
2N particles. From Lemma 3.9 we get, letting the Ae

t be random again, the following lemma.

Lemma 3.10

Pδθ [ZN({1}) > 0] ≤ lim inf
t→∞

Pπθ [B t]

≤ lim sup
t→∞

Pπθ [B t] ≤ Pδθ [ZN ((0, 1]) > 0].
(3.34)

Proof Assume that (Ae, e ∈ TN ) is an i.i.d. family of U [0, 1] random variables. Define

Be =
∏

f≤e

Af . (3.35)

Hence − logBe is a sum of i.i.d. exp(1) random variables. It follows that (recall 3.3)

Lθ


 ∑

e∈{0,1}N

δY e
Be


 = Lδθ [ZN ]. (3.36)

Now recall that (Ae
t , e ∈ TN ) is asymptotically i.i.d. U [0, 1] (see Lemma 3.6). Since the r.h.s.

(3.33) depends continuously on {αe, e ∈ T}, we can in (3.33) integrate over {Ae
t , e ∈ TN} and

pass to the limiting distribution of the latter random variables to get (3.34) from (3.33). 2

Let us return to the proof of Proposition 3.3. Note that

lim
N→∞

Pδθ [ZN ({1}) > 0] = lim
t→∞

Pδθ [Zt({1}) > 0] (3.37)

and

lim
N→∞

Pδθ [ZN((0, 1]) > 0] = lim
t→∞

Pδθ [Zt((0, 1]) > 0]. (3.38)

Hence by Lemma 1.13 both sides in (3.34) coincide with p(θ). This finishes the proof of Proposi-
tion 3.3. 2
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Now we can summarise the content of this subsection in the following proposition, which describes
the asymptotic of two walks and the relevant statistics of the medium. Recall that Bt is the event
that two random walks meet in the presence of the medium provided they run backwards from time
t, evolve independently of the medium and start both at site 0. Consider (Zt, Yt) where Yt is the
position in [0, 1] of a tagged particle from Zt. Therefore, (Yt) is again a Fisher–Wright diffusion.
With this object we can describe the block–averages of the medium together with the properties
of the coalescent as follows:

Proposition 3.11

Lπθ

[((1

4
t−αηt([−tα/2, tα/2]2), α ∈ [0, 1]

)
, 1B t

)]
,

t→∞
=⇒
fdd
Lδθ [(((Y− log α), α ∈ [0, 1]), 1Z∞((0,1])>0))].

(3.39)

Proof Note that the convergence of the second component is an immediate consequence of
Lemma 3.9 and 3.10. The convergence of the first component is just a special case of Propo-
sition 3.1. The point is, of course, to show that the dependence structure between the two compo-
nents is given correctly. To this end go back to Lemma 3.9. From the fact that ‖X1

tα−X2
tα‖2 ∼ tα/2

and Proposition 3.1 we get

Lπθ

[((1

4
t−αηt([−tα/2, tα/2]2),

1

4
t−αηt(X

1
tα + [−tα/2, tα/2]2)

)
α ∈ [0, 1]

)]

t→∞
=⇒
fdd
Lδθ

[((
Y ∅− log α, Y ∅− log α

)
, α ∈ [0, 1]

)]
.

Thus we can add on the left hand sides in (3.33) conditions on 1
4 t−αηt([−tα/2, tα/2]2) at finitely

many points α and have to impose the same conditions at the right hand side of (3.33) – now for
Y ∅ (or any other fixed Y e). The same is true in (3.34) when we replace Y ∅ by one tagged particle
of ZN . Now argue as in (3.37)ff in order to replace ZN first by Zt and then let t→∞. 2

3.3 Coalescing Random Walk in a Voter Medium: m Particle Case

Recall that we want to study the asymptotic number of particles of a coalescing random walk in
the voter–medium. We did this in the previous subsection for starting with two particles. Now
we generalise to m particles. Our strategy is, as in Subsection 3.2, to obtain a result on the times
when free particles meet first. Then we use the information on the clusters of the voter model
(medium) to compute how many particle really coalesce.

The usual way that coalescing random walk (X̃t
s)s∈[0,t] with X̃t

0(Z
2) = m is generated from

independent random walk (X i
s)s≥0, i = 1, . . . , m is as follows. Two free particles i and j at the

same position X i
s = Xj

s at time s induce a coalescence in X̃t at rate ηt−s(X
i
s), if the particles have

not coalesced before (in X̃t).

If we are interested only in the distribution of X̃t
t (instead of in the whole path) then we can

reverse the order in which the particles coalesce: i and j coalesce at rate ηt−s(X
i
s)1Xi

s=Xj
s
, where

s runs backwards from t to 0. This fact simplifies the investigation considerably since in the limit
t → ∞ the times s when two particles meet accumulate at 0, when seen in the logarithmic scale

αs =
log s

log t
.

Free Random Walks

Let (X i
s)s≥0, i = 1, . . . , m, be independent simple random walks on Z

2. We introduce marked
coalescence times. Whenever two random walks meet they stay “close” together and keep recol-
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liding for a while until they have again a distance comparable to the mutual distances of the other
random walks. These meeting times form asymptotically as t → ∞ a discrete point process of
times and labels (which indicate which pair has met). We formalise this idea here and prove a
distributional limit result for t→∞.

Define random variables αn,t and βn,t, n ∈ N, t ≥ 0 by α0,t = β0,t = 1 and

αn,t =
log sup{s < tβn−1,t/ log t : X i

s = Xj
s for some i 6= j}

βn−1,t log t
, (3.40)

where βn,t =
∏

k≤n αk,t. Denote by ℓn,t the two indices of a pair of particles chosen at random

from those that meet at time tβn,t , so that we have

ℓn,t = (ℓn,t(1), ℓn,t(2)) ∈ {(i, j)|i < j and X i
tβn,t = Xj

tβn,t
}. (3.41)

Finally, let An,t = (αn,t, ℓn,t), n ∈ N.
The key which allows us to reduce everything to the constructions used in the two particle case

is the following:

Lemma 3.12 (i) Let (An) = (αn, ℓn), n ∈ N an i.i.d. family of random variables with

P[αn < x, ℓn = (i, j)] = (1− x)(
m
2 )/

(
m

2

)
, x ∈ [0, 1], 1 ≤ i < j ≤ m.

Then
L[(An,t)n∈N]

t→∞
=⇒ L[(An)n∈N], (3.42)

(ii) For any n ∈ N the definition of ℓn,t leads asymptotically (as t→∞) to a unique pair:

lim sup
t→∞

P[X i
s = Xj

s for some s ∈ [tβn,t/ log t, tβn,t ] and (i, j) 6= ℓn,t] = 0. (3.43)

Proof The first part follows from [CG86, Sec. 5] who showed that asymptotically the different
pairs of random walks act independently. Then by Lemma 3.6 together with the exchangeability
of the random walks the claim follows.

The second part is obvious since the pairs of particles that do not meet at time tβn,t have a
distance of order tβn,t/2 (see [CG86, Lemma 1 on page 363]) and hence do not meet in the time
interval of length tβn,t/ log t (see (3.20)).

Coalescence in the Medium

We bring the medium back into the picture. Define the event that the pair ℓn,t of walks meeting
at time tβn,t experiences the catalyst within the time they spend together at this instance. Let

B n,t =

{∫ tβn,t

tβn,t / log t

ηt−s(X
ℓn,t(1)
s )1

X
ℓn,t(1)
s =X

ℓn,t(2)
s

ds > 0

}
. (3.44)

Lemma 3.13 Asymptotically as t→∞: Conditioned on the path of

Ȳ t
s :=

1

4
t−e−s

ηt−te−s ([−te
−s/2, te

−s/2]2), s ≥ 0 (3.45)

(B n,t)n∈N is an independent sequence and

lim
t→∞

E
[∣∣E

[
B n,t

∣∣Ȳ t
]
− p(Ȳ t

− log βn,t
)|
]

= 0. (3.46)
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Proof The proof is a refinement of the arguments used in showing Proposition 3.3. It suffices
to show the statement for fixed N ∈ N and {Bn,t, n ≤ N}. As a first step one notes that
given the βn,t and (ηs)s∈[tβn,t/ log t,tβn,t ], n ≤ N , we have independence of the Bn,t. In order to
compute the conditioned probabilities one proceeds as in Step 2 and 3 in Section 3.2: one splits

(X
ℓn,t(1)
s − X

ℓn,t(2)
s )s∈[tβn,t/ log t,tβn,t ] into finitely many bridges and applies Lemma 3.7 to reduce

the condition on the path of η to a condition on small spatial windows at finitely many time points.
To all of these windows (also for all n ≤ N) one applies the multiple scale analysis of the clusters
of the voter model (Proposition 3.1) to conclude as in Step 4 of Section 3.2 that the conditional
probability of Bn,t is asymptotically (as t → ∞) our p(Ȳ t

−βn,t
). This yields both, asymptotic

independence given Ȳ t as well as formula (3.46). We omit the tedious details. 2

Rescaling Limit of the Marked Coalescence Times

We combine Lemma 3.12 and Lemma 3.13 with the proposition on the diffusive clustering of the
voter model (Proposition 3.1) to the following statement which is stronger than Proposition 1.15.
This proposition in turn implies Theorem 2. Hence with the next proposition we finish the proof
of Theorem 2.

Proposition 3.14

Lπθ

[
(Ȳ t

s )s≥0,

∞∑

n=1

1B n,t
δ(− log βn,t,ℓn,t)

]
t→∞
=⇒
fdd
Lθ[(Ys)s≥0, π

Y ], (3.47)

where πY is a Poisson point process on R
+ × {(i, j) : 1 ≤ i < j ≤ m} with intensity (λ is the

counting measure) p(Ys)dsλ(d(i, j)).

Proof of Proposition 1.15 Consider (3.47). The meaning of a point δ(s,(i,j)) in the expression

on the l.h.s. of (3.47) is that the particles i and j coalesce by time te
−s

if they have not coalesced
before (recall (3.11) – (3.17)). In particular, by the exchangeability of the particles, the total rate

of coalescence is, in the limit t→∞,
(
ms

2

)
p(Ys) if there are ms uncoalesced particles at time te

−s

.
Furthermore πY depends continuously on Y . This proves the convergence of the coalescent in the
voter medium to the time–transformed Kingman coalescent. Since the voter model converges in
law to θ1δ1 + (1− θ1)δ0 we have proved Proposition 1.15. 2

3.4 Harmonic Functions of Branching Fisher–Wright Diffusions

In this subsection we give the
Proof of Lemma 1.13
Existence of a solution of the Dirichlet problem is easy. In fact, for any Φ : Nf ([0, 1]) → [0, 1]
which is multiplicative in the sense that Φ(z1 + z2) = Φ(z1) ·Φ(z2), u(t, θ) := Eδθ [Φ(Zt)] solves the
backward equation

∂tu =
1

2
θ(1− θ)u′′ + u2 − u. (3.48)

(Note that the analogue of (3.48) with 1
2u′′ instead of 1

2θ(1−θ)u′′ is the well–known KPP equation
(cf. [McK75]).)

In this case
v(t, θ) := Eδθ [1− Φ(Zt)] = 1− u(t, θ)
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solves the backward equation

∂tv =
1

2
θ(1 − θ)v′′ − v2 + v. (3.49)

Putting Φ(z) := 1{0}(z({1})) and Φ(z) := 1{0}(z((0, 1])), respectively, we see that both probabilis-
tic expressions in Lemma 1.13 are stationary solutions of (3.49) and therefore solve (1.10). Also,
they clearly satisfy the boundary conditions (1.11).

We are thus left with showing uniqueness. Assume that p1 and p2 are two solutions of (1.10)
and (1.11). Note that due to concavity we must have pi(x) ≥ x, x ∈ [0, 1], i = 1, 2. Let f = p1−p2.
Then if x ∈ (0, 1) and f(x) 6= 0

f ′′(x)

f(x)
=

p′′1(x)− p′′2 (x)

f(x)

= − 2

x
· 1− p1(x)− p2(x)

1− x

> − 2

x
.

(3.50)

Since by assumption f(0) = f(1) = 0, Lemma 3.15 below (with a = 1) implies f ≡ 0. 2

Let J1 the Bessel function of the first kind with parameter 1 and let z0 its smallest non-trivial
zero. It is well known that z0 ≈ 3.832, hence z2

0/8 ≈ 1.836.

Lemma 3.15 Let a ∈ (0, z2
0/8) and f : [0, a]→ R be twice continuously differentiable and subject

to the differential inequality

f ′′(x)

f(x)
> − 2

x
, if x ∈ (0, a) and f(x) 6= 0. (3.51)

If f(0) = f(a) = 0, then f ≡ 0.

Proof Assume that there exists an x0 ∈ (0, a) with f(x0) 6= 0. W.l.o.g. we may assume f(x0) > 0
(otherwise consider −f). For δ, γ > 0 define the function Hδ,γ by

Hδ,γ(x) = δ
√

x
(
γJ1(
√

8x)−N1(
√

8x)
)
, (3.52)

where N1 is the Bessel function of the second kind (or Neumann function) with parameter 1. It is
well known that Hδ,γ is the general solution of the differential equation

H ′′δ,γ(x) = −2Hδ,γ(x)

x
, x > 0, (3.53)

with Hδ,γ(0) = δ/π.
It is well known that J1(0) = 0 and J1(x) > 0 for all x ∈ (0, z0). Now fix a γ0 > 0 such that

H1,γ0(x) > 0 for all x ∈ [0, a] and define

δ0 = inf
{
δ > 0 : Hδ,γ0(x) ≥ f(x), x ∈ [0, a]

}
. (3.54)

By assumption on f , δ0 ∈ (0,∞). Since Hδ0,γ0(0) > f(0) and Hδ0,γ0(a) > f(a), there exists
a t ∈ (0, a) such that Hδ0,γ0(t) = f(t), hence H ′δ0,γ0

(t) = f ′(t). However, by (3.51) and (3.53),
f ′′(t) > H ′′δ0,γ0

(t) which contradicts (3.54). 2
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4 Proof of Theorem 3 (d = 1)

The key point here is that medium and reactant have distributions which can be determined via
duality in terms of systems of coalescing random walks with and without medium. For such objects
we will obtain scaling limits in the classical Brownian scaling. Some technical effort is needed to
make the proof rigorous.

In the first subsection we show convergence of the medium in the sense of an invariance principle
for the interfaces between the zeros and ones, away from t = 0.

In the second subsection we rescale the dual process in the medium. To this end we first replace
the dual process by instantaneously coalescing random walk in the medium. Then we show that we
can forget the small times and that it is enough to have the invariance principle away from t = 0.
Afterwards we construct instantaneously coalescing random walks in the medium in a deterministic
way from objects for which the invariance principle applies directly, and finally we combine the
two just mentioned results to obtain the theorem.

4.1 Rescaling the Medium

Here we show that the rescaled voter model converges to a process that has the form of an entrance
law on (0,∞) and is given in terms of annihilating Brownian motions. We begin by deriving the
limit law for a positive small time.
Let

∆t = {i ∈ Z : ηt(i) 6= ηt(i + 1)},
and fix ε > 0. It is easy to show (cf. [Dur88], page 242) that ηεT (⌊T 1/2•⌋) converges as T → ∞
to a stationary piecewise constant process {η∞ε (x), x ∈ R} with values in {0, 1} and with isolated
discontinuities Dε ⊂ R. Hence T−1/2∆εT converges in distribution to Dε as T →∞. Furthermore
it is clear that as t evolves, the discontinuities of ηt(⌊•⌋) form annihilating random walks.

Let ((Xt(i))t≥0, i ∈ Z) be a family of independent random walks from which the annihilating
walks are generated. For definiteness we assume that two walks jump to a cemetery state ∂
immediately when they meet. Denote by ((X̂T,ε

t (i))t≥0, i ∈ ∆εT ) the system of annihilating random

walks started from ∆εT . For t ≥ εT and i ∈ Z define jT,ε
t (i) by

jT,ε
t (i) = inf

{
j ∈ ∆εT : X̂T,ε

t−εT (j) ≥ i
}

. (4.1)

It is easily verified that
(ηεT (jT,ε

t (i)), i ∈ Z)t≥εT

is a voter model on Z.
Now consider a family of independent Brownian motions {(Wt(x))t≥0, x ∈ R}, where W0(x) =

x. Clearly
(
T−1/2XtT (xT 1/2), x ∈ T−1/2∆εT

)
t≥0

converges to (Wt(x), x ∈ Dε)t≥0 in the sense of

an invariance principle. The same is true for X̂ and annihilating Brownian motion (Ŵ ε
t (x), x ∈

∆ε)t≥0.

Now we are ready to define the limiting process η∞ of the rescaled voter model. Define

gε
t (x) = inf{y ∈ Dε : Ŵ ε

t−ε(y) ≥ x}, (4.2)

and
η∞t (x) = η∞ε (gε

t (x)), t ≥ ε, x ∈ R. (4.3)

Then we have proved above the following invariance principle.
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Proposition 4.1 For every ε > 0:

L
[
(ηtT (⌊T 1/2•⌋))t≥ε

]
T→∞
=⇒ L [(η∞t )t≥ε] (4.4)

in the sense of an invariance principle. By taking now the projective limit (ε → 0) we can define
(η∞t )t>0 and can then conclude that

L
[(

ηtT (T 1/2•)
)

t>0

]
T→∞
=⇒ L

[
(η∞t )t>0

]
. (4.5)

4.2 Rescaling the Dual Process of the Reactant

Instantaneous Coalescence

Consider the coalescing random walk in voter medium, which was denoted by X̃T . The first step is
to change from (the usual delayed) coalescing random walk X̃T to instantaneously coalescing ran-

dom walk (X
T

t )t∈[0,T ] generated from the same realization of the walks (Xt) but with instantaneous
coalescence of a pair a, b at the first time they meet in the presence of the catalyst.

Lemma 4.2 For A ⊂ R finite

lim
T→∞

P
[
X

T

T (⌊T 1/2a⌋) 6= X̃T
T (⌊T 1/2a⌋) for some a ∈ A

]
= 0. (4.6)

Proof Fix a finite set A ⊂ R and let m = |A|. For a, b ∈ A, a < b let

τ
(a,b)
T = inf

{
t > 0 : Xt(⌊T 1/2a⌋) = Xt(⌊T 1/2b⌋), ηT−t(Xt(⌊T 1/2a⌋)) = 1

}
. (4.7)

Let τ1 ≤ . . . ≤ τ(m
2 ) be the order statistic of {τ (a,b)

T : a, b ∈ A, a < b}. Write a(l) and b(l) for the a

and b such that τ
(a,b)
T = τl.

For K > 0 define the event

ET (K) =

{
∃l ∈ {1, . . . ,

(
m

2

)
− 1} : τl < T,

∫ τl+1

τl

ηT−s(Xt(⌊T 1/2a(l)⌋))1Xt(⌊T 1/2a(l)⌋)=Xt(⌊T 1/2b(l)⌋)dt < K

}
.

(4.8)

Using the recurrence of the difference walk and distributional convergence of ηt to θ1δ1 +(1−θ1)δ0,
it is easy to check that

lim
T→∞

P[ET (K)] = 0, K > 0. (4.9)

This concludes the proof of Lemma 4.2. 2

Rescaling the Coalescent

Now we prepare for using the invariance principle for the medium and the dual process of the
reactant. Since the rescaled medium is very irregular for t → 0 we first show that we can neglect
the effect of very small times.

For ε > 0 define (X
T,ε

t ) as above but with coalescence allowed only if t ≤ (1 − ε)T . Hence

(X
T,ε

t ) is independent of the medium at times before εT .
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Lemma 4.3 Fix A ⊂ R finite.

lim
T0→∞

lim sup
ε→0

sup
T≥T0

P
[
X

T,ε

T (⌊T 1/2a⌋) 6= X
T

T (⌊T 1/2a⌋) for some a ∈ A
]

= 0. (4.10)

Proof The probability on the l.h.s. can be bounded by
(|A|

2

)
times the probability that a random

walk started at 0 is at 0 at some time t ∈ [2(1 − ε)T, 2T ]. However this probability converges
(uniformly in T ≥ T0) to 0 as ε→ 0. 2

Let (W t)t∈[0,1] be coalescing Brownian motions in the medium η∞. Define (W
ε

t ) similarly as

(X
T,ε

t ) by prohibiting coalescence after time 1 − ε. Clearly we have the analogous statement to
Lemma 4.3.

Lemma 4.4 Fix A ⊂ R finite.

lim sup
ε→0

P
[
W

ε

1(a) 6= W 1(a) for some a ∈ A
]

= 0. (4.11)

Conclusion

With a view to the proceeding two lemmas and the duality for the reactant, it is enough to show
for every ε > 0 and A ⊂ R finite that

lim
T→∞

L
[(

ηT•(⌊T 1/2•⌋), |XT,ε

T (A)|
)]

= L
[(

η∞, |W ε

1(A)|
)]

, (4.12)

in order to conclude that in the sense of f.d.d.:

L
[
(ηtT (T−1/2•), ξtT (T−1/2•))t>0

]
t→∞
=⇒ L [(η∞t , ξ∞t )t>0] . (4.13)

We establish this invariance principle (4.12) for the medium and the dual process. Fix A ⊂ R

finite and ε > 0. Let ((X ′t(i))t≥0, i ∈ Z) be a family of random walks from which the approximate

dual process
(
(X

T,ε

t (⌊T 1/2a⌋))t∈[0,T ], a ∈ A
)

is built. Further let ((W ′
t (x))t≥0, x ∈ R) be an

independent family of Brownian motions from which ((W
ε

t (a))t∈[0,1−ε], a ∈ A) is built.

Note that |W ε

1(A)| is a deterministic function FA,ε of η∞ε (0), ∆ε, W , and W ′. Furthermore F
is almost everywhere locally constant. In particular, it is almost everywhere continuous.

Note also that the same function F applies to |XT,ε

T (A)|:

|XT,ε

T (A)| = FA,ε(ηεT (0), T−1/2∆εT , T−1/2XT•(⌊T 1/2•⌋), T−1/2X ′T•(⌊T 1/2•⌋)). (4.14)

Note that also the pair (|XT,ε

T (A)|, ηT•(⌊T 1/2•⌋)) is a continuous function of the variables on the
right hand side of (4.14). Hence the invariance principle and the continuous mapping theorem
yield (4.12). This finishes the proof of Theorem 3. 2
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École d’Été de Probabilités de Saint-Flour XXI—1991, volume 1541 of Lecture Notes in
Mathematics, pages 1–260, Berlin, 1993. Springer.

[DF97a] Donald A. Dawson and Klaus Fleischmann. A continuous super-Brownian motion in a
super-Brownian medium. J. Theoret. Probab., 10(1):213–276, 1997.

[DF97b] Donald A. Dawson and Klaus Fleischmann. Longtime behavior of a branching process
controlled by branching catalysts. Stochastic Process. Appl., 71(2):241–257, 1997.

[DGV95] Donald A. Dawson, Andreas Greven, and Jean Vaillancourt. Equilibria and quasiequi-
libria for infinite collections of interacting Fleming-Viot processes. Trans. Amer. Math.
Soc., 347(7):2277–2360, 1995.

[DP98] Donald A. Dawson and Edwin A. Perkins. Long-time behavior and coexistence in a
mutually catalytic branching model. Ann. Probab., 26(3):1088–1138, 1998.

[Dur88] Richard Durrett. Lecture Notes on Particle Systems and Percolation. Wadsworth and
Brooks/Cole, 1988.

[EK86] Stewart N. Ethier and Thomas G. Kurtz. Markov processes. John Wiley & Sons Inc.,
New York, 1986. Characterization and convergence.

[ET60] Paul Erdös and S. James Taylor. Some problems concerning the structure of random
walk paths. Acta Math. Acad. Sci. Hungar., 11:137–162, 1960.

[FG94] Klaus Fleischmann and Andreas Greven. Diffusive clustering in an infinite system of
hierarchically interacting diffusions. Probab. Theory Related Fields, 98(4):517–566, 1994.

[FG96] Klaus Fleischmann and Andreas Greven. Time-space analysis of the cluster-formation
in interacting diffusions. Electron. J. Probab., 1:no. 6, approx. 46 pp. (electronic), 1996.

[FK99] Klaus Fleischmann and Achim Klenke. Smooth density field of catalytic super–Brownian
motion. Ann. Appl. Probab., 9(2):298–318, 1999.



29

[GKW99] Andreas Greven, Achim Klenke, and Anton Wakolbinger. The longtime behavior of
branching random walk in a random medium. Electron. J. Probab., 4:no. 12, 80 pages
(electronic), 1999.

[HL75] Richard A. Holley and Thomas M. Liggett. Ergodic theorems for weakly interacting
infinite systems and the voter model. Ann. Probability, 3(4):643–663, 1975.

[Kle96] Achim Klenke. Different clustering regimes in systems of hierarchically interacting dif-
fusions. Ann. Probab., 24(2):660–697, 1996.

[Kle00a] Achim Klenke. Absolute continuity of catalytic measure–valued branching processes.
Stoch. Proc. Appl., (to appear), 2000.

[Kle00b] Achim Klenke. A review on spatial catalytic branching. In Luis Gorostiza, editor,
Stochastic Models, A Conference in Honour of Professor Don Dawson, volume 26 of
Conference Proceedings, pages 245–263. Canadian Mathematical Society, Amer. Math.
Soc., Providence, 2000.

[Lig85] Thomas M. Liggett. Interacting particle systems. Springer-Verlag, New York, 1985.

[McK75] Henry P. McKean. Application of Brownian motion to the equation of Kolmogorov-
Petrovskii-Piskunov. Comm. Pure Appl. Math., 28(3):323–331, 1975.

[MT95] Carl Mueller and Roger Tribe. Stochastic P.D.E.’s arising from the long range contact
and long range voter processes. Probab. Theory Related Fields, 102(4):519–545, 1995.

[RW87] L. C. G. Rogers and David Williams. Diffusions, Markov processes, and martingales.
Vol. 2. John Wiley & Sons Inc., New York, 1987.

[Shi80] Tokuzo Shiga. An interacting system in population genetics. J. Mat. Kyoto Univ.,
20:213–242, 1980.

[SS80] Tokuzo Shiga and Akinobu Shimizu. Infinite-dimensional stochastic differential equa-
tions and their applications. J. Math. Kyoto Univ., 20(3):395–416, 1980.


