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Abstract

In this paper we present the classification of symmetric designs with

parameters (79, 27, 9) on which a nonabelian group of order 39 acts faithfully.

In particular, we show that such a group acts semi-standardly with 7 orbits.

Using the method of tactical decompositions, we are able to construct exactly

1463 non-isomorphic designs. The orders of the full automorphism groups

of these designs all divide 8 · 3 · 13.
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1 Introduction and Basic Notions

Investigations of symmetric block designs have found increasing interest in the

field of combinatorics during the past decade. A few methods for the construction

of symmetric block designs are known and all of them have shown to be effective

in certain situations. Here, we shall use the method of tactical decompositions,

assuming that a certain automorphism group operates on the design we want to

construct. This method has been suggested and used by Zvonimir Janko [6]; see

also [4], [7], and [9].

We assume that the reader is familiar with the basic facts of design theory.

For introductory material see, for instance, [2], [3], and [8]. Briefly, a symmetric

design with parameters (79,27,9) is a finite incidence structure consisting of two

disjoint sets P and B, where the elements of P are called points and the elements

of B are called blocks or lines; furthermore, |P| = |B| = 79. In addition, every

block is incident with precisely 27 points and every 2 points are incident with

precisely 9 blocks. In this paper, for the sake of simplicity and without loss of

generality, we shall say that a point lies on a block or that a block passes through

a point if the point and the block in question are incident.

It is known that symmetric (79, 27, 9)-designs exist. Namely, the existence of

symmetric designs for all triples (qd+1− q +1, qd, qd−1) has been proved for d ≥ 2

and q a prime power greater than 2, q− 1 the order of a projective plane; see [2].

If g is an automorphism of a symmetric design D with parameters (v, k, λ),

then g fixes an equal number of points and blocks, see [8, Theorem 3.1, p. 78].

We denote these fixed sets by FP(g) and FB(g) respectively, and their cardinality

simply by |F (g)|. We shall make use of the following upper bound [8, Corollary

3.7, p. 82] for the number of fixed points:

|F (g)| ≤ k +
√

k − λ (1)

It is also known that an automorphism group G of a symmetric design has the
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same number of orbits on the set of points P as on the set of lines B; see [8,

Theorem 3.3, p. 79]. Denote that number by t. If there exists a 1-1 mapping

between the orbits of G on P and the orbits of G on B such that corresponding

orbits have the same lengths, then we call the operation of G on the design D

semi-standard.

2 Method of Construction

Let D be a symmetric design with parameters (v, k, λ), and let G be a subgroup

of the automorphism group Aut(D) of D. Denote the point orbits of G on P by

P1,P2, . . . ,Pt and the line orbits of G on B by B1,B2, . . . ,Bt. Put |Pr| = ωr and

|Bi| = Ωi. Obviously,

t∑
r=1

ωr = v and
t∑

i=1

Ωi = v. (2)

Let γir be the number of points from Pr which lie on a line from Bi; clearly,

that number does not depend on the particular line chosen. Similarly, let Γjs be

the number of lines from Bj which pass through a point from Ps. Then, obviously,

t∑
r=1

γir = k and
t∑

j=1

Γjs = k. (3)

By [3, Lemma 5.3.1, p. 221], our partition of the point set P and of the block

set B forms a tactical decomposition of the design D in the sense of [3, p. 210].

Thus, the following equations hold:

Ωi · γir = ωr · Γir, (4)
t∑

r=1

γirΓjr = λΩj + δij(k − λ), (5)

t∑
i=1

Γirγis = λωs + δrs(k − λ). (6)

For a proof of these equations, the reader is referred to [3] and [4]. Equation (5)
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together with (4) yields

t∑
r=1

Ωj

ωr
γirγjr = λΩj + δij(k − λ). (7)

Definition 1 The (t×t)-matrix (γir) is called the orbit structure of the design D.

The first step in the construction of a design is to find all orbit structures. If

the number t is not too large, this can be done without the help of a computer.

The second step of the construction is usually called indexing. In fact, for each

coefficient γir of the orbit matrix one has to specify which γir points of the point

orbit Pr lie on the lines of the block orbit Bi. Of course, it is enough to do this

for a representative of each block orbit, as the other lines of that orbit can be

obtained by producing all G-images of that representative. If possible, we choose

the line which represents a block orbit in such a way that it is stabilized by a

subgroup of G different from 〈1〉.

3 Action of the Frobenius Group of Order 39

We shall determine the action of the non-abelian group G of order 39 on a sym-

metric (79,27,9)-design D.

Lemma 1 Let ρ be an element of G with o(ρ) = 13. Then 〈ρ〉 has precisely one

fixed point and precisely one fixed block.

Proof We know that the number of fixed points is the same as the number

of fixed blocks for the action of 〈ρ〉 on D. Denote this number by f . Clearly,

f ≡ 1 (mod 13), and formula (1) for the upper bound for the number of fixed

points yields f ∈ {1, 14, 27}. As o(ρ) > λ, application of a result of M. Aschbacher

[1, Lemma 2.6, p. 274] forces the fixed structure to be a subdesign of D. But

there is no symmetric design with v = 14 or v = 27 and λ = 9. Hence, f is equal

to 1. 2
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Since there is only one isomorphism class of nonabelian groups of order 39,

we may put

G = 〈 ρ, σ | ρ13 = 1, σ3 = 1, ρσ = ρ3 〉.

Our next task is to determine the orbit lengths on the set of points and the

set of blocks resulting from the action of G on the symmetric design D. The

possible orbit lengths are 1, 3, 13 and 39.

Lemma 2 There is no orbit of length 3.

Proof If false, then ρ would have at least 3 fixed points or 3 fixed lines which,

however, is not possible. 2

Theorem 1 The group G acts semi-standardly on D. There are precisely 7 orbits

on points and on blocks, one of length 1, and the other ones each of length 13.

Proof There are precisely three possibilities for the orbit lengths for the point

set and the block set. These may be written as arrays:

O1 = [1, 39, 39], O2 = [1, 13, 13, 13, 39], O3 = [1, 13, 13, 13, 13, 13, 13].

Of course, we may renumber the orbits, if necessary. As the numbers of compo-

nents of Oi and Oj are different for i 6= j, the group G acts semi-standardly on

D. The case O1 does not occur, as then it is impossible to construct the fixed

block. If we are in the case O2, then there is no orbit structure. Namely, while

trying to compute any two rows of the orbit structure which correspond to line

orbits of lengths 1 and 13, we obtain a contradiction to equation (7). Thus, we

are in the case O3. 2

In what follows we assume that P1 contains the fixed point and B1 the fixed

block of D. Thus, |Pi| = |Bi| = 13 for i = 2, . . . , 7. From the structure of G it

follows that G acts faithfully on each line and point orbit of length 13. For i > 1

we put

Pi = {pi
0, . . . , p

i
12}.
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Thus, G acts on these point orbits as a permutation group in a unique way.

Hence, for the two generators of G we may put

ρ = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) and

σ = (1, 3, 9)(2, 6, 5)(4, 12, 10)(7, 8, 11).

We immediately obtain the following.

Corollary 1 The element σ of order 3 of G fixes precisely 7 points and 7 blocks

of D. Each block orbit contains a unique line stabilized by σ.

The following definition is basic for our construction of designs.

Definition 2 The set of indices of the points of Pr which lie on a fixed repre-

sentative of the block orbit Bi is called the index set for the position (i, r) of the

orbit structure and the representative chosen.

In what follows, we are going to construct a representative for each block orbit;

namely, the line fixed by σ. Clearly, σ acts on the intersection of Pr with the

representative of the block orbit Bi. Therefore, the numbers γir are all congruent

to 0 or to 1 modulo 3. We are now able to compute the orbit structures for D,

and we essentially obtain precisely one such structure:

1 13 13 0 0 0 0

1 4 4 6 6 3 3

1 4 4 3 3 6 6

0 6 3 6 3 6 3

0 6 3 3 6 3 6

0 3 6 6 3 3 6

0 3 6 3 6 6 3
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It is easy to see that the automorphism group of this orbit structure is iso-

morphic to the dihedral group D8 of order 8. We shall use this fact to eliminate

isomorphic designs during the indexing process. Here, an automorphism x of a

matrix is a permutation of rows followed by a permutation of columns such that

the application of x to the matrix leaves the matrix unchanged. It is clear that

the set of all such automorphisms is a group, which we call the automorphism

group of that matrix.

4 Indexing of the Representatives for each Block Or-

bit

It is trivial to index - that is, to find the right index sets for - the unique element of

B1, as this is the fixed line of D under the action of G; this element corresponds

to the first row of the orbit structure. Thus, we consider only the right-lower

(6× 6)-submatrix of the orbit structure; the first row and the first column of our

orbit structure are not relevant to our construction. Denote that submatrix by

B and its coefficients by bij , 1 ≤ i, j ≤ 6. Obviously, bij ∈ {3, 4, 6}. We want

to find all possibilities for the index sets for all the positions of the matrix B.

We obtain these possibilities from the cycles of the permutation representation

of σ. Clearly, there are precisely four possibilities for the index set in case bij = 3

or bij = 4 and precisely six possibilities for the index set in case bij = 6. All

together, we obtain precisely 14 index sets. We write them down and denote

them by the non-negative integers from 0 to 13:
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{1,3,9} = 0, {1,2,3,5,6,9} = 8,

{2,5,6} = 1, {1,3,4,9,10,12} = 9,

{4,10,12} = 2, {1,3,7,8,9,11} = 10,

{7,8,11} = 3, {2,4,5,6,10,12} = 11,

{0,1,3,9} = 4, {2,5,6,7,8,11} = 12,

{0,2,5,6} = 5, {4,7,8,10,11,12} = 13.

{0,4,10,12} = 6,

{0,7,8,11} = 7,

We can easily compute the number of possibilities for the index sets that have

to be checked for each block representative corresponding to the matrix B. For

each of the first two block representatives we obtain 44 · 62 = 9216, and for each

of the other four representatives we obtain 43 · 63 = 13824 possibilities.

Now, one constructs the possible orbits of length 13 one by one. To do

this, one considers the rows of B and replaces the numbers bij by index sets of

appropriate size, using the integer names for these index sets. For example, let

us take the first row of B. Making use of the ordering of the index sets, the first

possibility for an orbit to check would be

L1 : 4 4 8 8 0 0 .

One applies the group 〈ρ〉 of order 13 to the index sets occuring in L1 and checks

whether two different 〈ρ〉-images have the right intersection, by adding up the

intersection numbers for the six positions of L1. In this case, the intersection

number should be 8 to be good, since the G-fixed-point is not involved. If the

intersection condition is satisfied, then we retain L1; otherwise we discard L1.

The next possibility to check would be

4 4 8 8 0 1 ,

and the last one for the first row of B would be

7 7 13 13 3 3 .
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In this way, one gets six sets which exhaust all the possibilities for the six

block orbits, respectively, and which then have to be checked against each other

for the intersection property.

To reduce the number of possibilities and to eliminate isomorphic designs as

soon as possible, we make use of the group generated by the mapping

α : x 7→ 2x (mod 13)

Clearly, α induces an automorphism of order 12 of 〈ρ〉 which commutes with σ.

It is well known that such a group produces isomorphic designs [4, Lemma 1.8,

p. 54]. The cycle decomposition of α on the 14 index sets is

(0, 1, 2, 3) (4, 5, 6, 7) (8, 11, 13, 10) (9, 12).

Hence, α acts as an element of order 4 on the set of index sets.

We have thus used three means for reducing the output of isomorphic sym-

metric designs; namely, the automorphism group of the orbit structure, the lexi-

cographical ordering of the index sets to obtain an ordering of the orbit or block

types, and an ordering of designs (see example L1 - for a precise explanation of

how one introduces such an ordering the reader is referred to [4]), and the group

generated by α.

We may summarize the method in the following way. As we remarked above,

for the construction of the designs in question, we need not take into account the

first row and the first column of our orbit structure. Thus, we get the designs as

(6× 6)-matrices (so called small incidence matrices) the coefficients of which are

from {0, ..., 13} representing index sets. Since α acts transitively on the index sets

of cardinality 4, we may take into account only such small incidence matrices,

which have 4 at position (1, 1). While constructing one small incidence matrix

after another, we always apply to it the elements of the automorphism group of

the orbit structure. If the resulting matrix has not 4 at the left upper position, we

apply a power of α to it to get 4 at (1, 1). Then, if the matrix - so obtained - had
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been constructed earlier, we discard it, if not then the matrix will be retained.

For the last procedure the ordering of the set of the small incidence matrices is

helpful in making the computations very fast.

This proved to be enough to obtain only pairwise non-isomorphic symmetric de-

signs.

5 Results

The computations, outlined above, have been left to a computer. A suitable

program was running approximately two hours on a work station. Our main

result is contained in the following.

Theorem 2 There are exactly 1463 pairwise non-isomorphic symmetric designs

with parameters (79, 27, 9) which are faithfully acted upon by a Frobenius group

of order 39. The full automorphism groups of these designs are all direct products

of Frob39 with a subgroup of D8. The case Z4 × Frob39 does not occur.

Proof The computer computations led to 1463 symmetric designs. For each

design, we computed the statistics for the cardinalities of the intersections of

every triple of pairwise different blocks and found that there are 1463 pairwise

different statistics. Thus, all designs obtained are pairwise non-isomorphic. The

structures of the full automorphism groups of the designs obtained have been

determined using the program GAP [5] and a program written by V. Tonchev

[10]. 2

Application of V. Tonchev’s program [10] to each of the 1463 designs resulted

in the following statistics for the full automorphism groups of these designs:

|AutD| 39 78 156 312

Number of designs 411 668 312 72

As an immediate consequence of this table we get the following.
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Corollary 2 Up to isomorphisms there are precisely 441 symmetric designs with

parameters (79, 27, 9) that admit the Frobenius group of order 39 as full automor-

phism group.

From [9] we obtain the following.

Corollary 3 Up to isomorphisms there are precisely 72 symmetric designs with

parameters (79, 27, 9) the full automorphism group of which is isomorphic to the

direct product of a Frobenius group of order 39 with a dihedral group of order 8.

Proof S. Pfaff [9] has shown that there are at least 72 symmetric designs with

parameters (79,27,9) on which the above direct product acts faithfully. 2

6 Some Examples

It would be too much to list all 1463 designs we have constructed. Nevertheless,

we want to present four examples of (79,27,9)-designs that have pairwise different

orders of their full automorphism groups. We present these designs as (6 × 6)-

matrices the coefficients of which are index sets; here, the starting point is the

matrix B introduced earlier. It is not difficult to produce the complete incidence

matrices for these designs.

Example 1 |AutD1| = 39; AutD1
∼= Frob39;

4 4 8 8 0 2

4 4 2 2 12 8

12 2 8 2 12 2

12 2 2 8 0 8

2 12 8 2 0 8

0 13 0 12 13 0

Statistics of intersection of every 3 blocks:
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Points 0 1 2 3 4 5 6 7 8 9

Triples 338 4654 18616 37219 14443 3224 507 52 0 26

Example 2 |AutD2| = 78; AutD2
∼= Frob39 × Z2;

4 4 8 8 0 0

4 4 2 2 12 12

11 3 8 2 12 0

12 2 2 8 1 10

3 11 8 2 0 12

2 12 2 8 10 1

Statistics of intersection of every 3 blocks:

Points 0 1 2 3 4 5 6 7 8 9

Triples 572 4342 17914 38896 13260 3536 442 104 0 13

Example 3 |AutD3| = 156; AutD3
∼= Frob39 × E4;

4 4 8 8 0 0

4 4 2 2 12 12

11 3 8 2 10 1

11 3 2 8 1 10

3 11 8 2 1 10

3 11 2 8 10 1

Statistics of intersection of every 3 blocks:

Points 0 1 2 3 4 5 6 7 8 9

Triples 312 3016 20904 39832 9516 4524 832 104 0 39
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Example 4 |AutD4| = 312; AutD4
∼= Frob39 ×D8;

4 4 8 8 2 2

4 4 2 2 8 8

9 3 10 1 10 1

9 3 1 10 1 10

3 9 10 1 1 10

3 9 1 10 10 1

Statistics of intersection of every 3 blocks:

Points 0 1 2 3 4 5 6 7 8 9

Triples 780 3120 18460 41392 11232 3068 676 312 0 39
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14
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