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Overestimated time-to-collision for quiet vehicles: Evidence from a study 
using a novel audiovisual virtual-reality system for traffic scenarios 
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A B S T R A C T   

To avoid collision, pedestrians intending to cross a road need to estimate the time-to-collision (TTC) of an 
approaching vehicle. Here, we present a novel interactive audiovisual virtual-reality system for investigating 
how the acoustic characteristics (loudness and engine type) of vehicles influence the TTC estimation. Using 
acoustic recordings of real vehicles as source signals, the dynamic spatial sound fields corresponding to a vehicle 
approaching in an urban setting are generated based on physical modeling of the sound propagation between 
vehicle and pedestrian and are presented via sound field synthesis. We studied TTC estimation for vehicles with 
internal combustion engine and for loudness-matched electric vehicles. The vehicle sound levels were varied by 
10 dB, independently of the speed, presented TTC, and vehicle type. In an auditory-only condition, the cars were 
not visible, and lower loudness of the cars resulted in considerably longer TTC estimates. Importantly, the 
loudness of the cars also had a significant effect in the same direction on the TTC estimates in an audiovisual 
condition, where the cars were additionally visually presented via interactive virtual-reality simulations. Thus, 
pedestrians use auditory information when estimating TTC, even when full visual information is available. At 
equal loudness, the TTC judgments for electric and conventional vehicles were virtually identical, indicating that 
loudness has a stronger effect than spectral differences. Because TTC overestimations can result in risky road 
crossing decisions, the results imply that vehicle loudness should be considered as an important factor in 
pedestrian safety.   

1. Introduction 

Safe mobility requires the ability to avoid potentially dangerous 
collisions with objects in the environment. For instance, a pedestrian 
crossing a road must avoid being hit by an approaching vehicle. In such a 
situation, our sense of hearing provides important information. For 
example, we can auditorily detect a vehicle approaching us from outside 
our field of view. The importance of acoustic information can be ex-
pected to be even higher for persons with visual impairment. Also, the 
recent event of increasing electric mobility poses the question of 
whether and how the acoustic characteristics of quieter (electric) vehi-
cles affect pedestrians’ perception of vehicles in traffic situations. 

When pedestrians want to cross a road while a vehicle is approach-
ing, a safe crossing is only possible if the time remaining until the vehicle 
arrives at the pedestrian’s position (time-to-collision, TTC2) is longer 

than the time needed to cross. Thus, a sufficiently accurate estimate of 
TTC is essential (e.g., Lee, Young, & McLaughlin, 1984; Petzoldt, 2014). 
Although the auditory detection of vehicles (“Are there any vehicles near 
me?”) was studied extensively in recent years (e.g., Altinsoy et al., 2015; 
Emerson, Kim, Naghshineh, Pliskow, & Myers, 2013; Poveda-Martinez 
et al., 2017), resulting in recommendations for auditory vehicle alert-
ing system (AVAS) technologies for electric vehicles (EVs) and corre-
sponding legislative actions (NHTSA 141, 2018; UNECE R138, 2017), 
auditory and audiovisual TTC estimation received only limited atten-
tion. There is a large body of literature on TTC estimation and road- 
crossing decisions, but focused on the visual modality (e.g., Hecht & 
Savelsbergh, 2004). Hence, there are significant gaps in our knowledge 
about collision avoidance based on auditory or combined auditory and 
visual information. 

In the visual domain, accurate TTC information is – at least in theory 
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– provided by so-called optical invariants when certain assumptions are 
met (e.g., objects are rigid and move at a constant velocity; see Lee, 
1976). For instance, the invariant τ (first described by Hoyle, 1957) 
valid for objects approaching an observer on a direct collision course 
and at a constant speed is defined as the ratio of an object’s instanta-
neous optical size to its instantaneous rate of optical expansion (Lee, 
1976), and thus relies solely on information available on the retina. 
However, many studies have demonstrated that even when τ-variables 
are available, other visual characteristics of the object can influence TTC 
judgments by providing heuristic cues. For instance, studies by DeLucia 
and colleagues (e.g., DeLucia, 1991; DeLucia, 2013) have shown that an 
approaching object’s optical size at the moment in time when the TTC 
judgment is made influences these judgments, such that smaller optical 
sizes are associated with later arrival time estimates compared to larger 
optical sizes at the same actual TTC (“size-arrival effect”). Apart from the 
importance for theories of TTC estimation, the size-arrival effect was 
proposed to be potentially relevant for traffic safety. For instance, ac-
cidents involving motorcyclists or children might in part be related to 
the smaller size of a motorcycle or a child compared to a car or an adult 
pedestrian, respectively (Caird & Hancock, 1994; DeLucia, 2013; Hor-
swill, Helman, Ardiles, & Wann, 2005; Petzoldt, 2016). 

In the auditory domain, accurate TTC information for objects 
approaching on a straight direct collision path at a constant velocity is 
provided, e.g., by a τ-like ratio of the objects’ instantaneous acoustic 
intensity to its instantaneous rate of change in intensity (DeLucia, 
Preddy, & Oberfeld, 2016; Jenison, 1997; Shaw, McGowan, & Turvey, 
1991). This is sometimes referred to as auditory τ. Other τ-like variables 
can be computed on the basis of both monaural and binaural auditory 
cues other than intensity (Jenison, 1997), and a multitude of heuristic 
cues related to the motion, distance, and TTC of an object are available 
(e.g., Jenison, 1997; Kaczmarek, 2005; Lutfi & Wang, 1999; Rosenblum, 
Carello, & Pastore, 1987; Zakarauskas & Cynader, 1991), just as in the 
visual domain (e.g., DeLucia, Kaiser, Bush, Meyer, & Sweet, 2003; Gray 
& Regan, 1998; Yan, Lorv, Li, & Sun, 2011). With this in mind, it is not 
surprising that humans are able to estimate TTC based on auditory in-
formation alone, and that some blind individuals can use auditory TTC 
information with an accuracy comparable to the ability of sighted peo-
ple to use visual TTC information (Rosenblum, Wuestefeld, & Saldana, 
1993; Schiff & Oldak, 1990). 

In two recent studies, we investigated in greater detail which cues 
are used in auditory and audiovisual TTC estimation (DeLucia, et al., 
2016; Keshavarz, Campos, DeLucia, & Oberfeld, 2017). The relative 
weights of auditory and visual cues were measured, using a behavioral 
reverse-correlation approach. TTC estimates across a range of scenarios 
were collected in conditions providing only auditory, only visual, or 
combined audiovisual information. We measured the relative weights 
assigned by participants to cues that provided accurate TTC information, 
specifically τ, in the auditory and visual domains (Lee, 1976; Shaw, 
et al., 1991). We also measured the weights assigned to simpler heuristic 
cues, which are less reliably accurate and can be misleading under 
certain conditions. These included optical size (i.e., the pictorial depth 
cue of relative size) and sound pressure level (SPL). The results consis-
tently showed that the accurate cues (τ) as well as heuristic cues 
contributed to TTC judgments in visual and auditory modalities, but the 
reliance on heuristic cues was greater in the auditory modality than in 
the visual modality. Participants relied strongly on the SPL at the 
moment in time when the TTC judgment was made, resulting in longer 
TTC estimates for approaching auditory objects with a lower acoustic 
intensity (i.e., lower loudness). These results represent the first evidence 
for an auditory analog of the visual size-arrival effect (DeLucia, 1991) 
discussed before, which we termed the “intensity-arrival effect”. At 
identical actual TTC, participants tend to judge softer sound sources to 
arrive later than louder sound sources. 

The intensity-arrival effect might indicate increased risks posed by 
quiet vehicles like electric cars. Pedestrians might overestimate the TTC 
of a quiet EV relative to a louder conventional vehicle with the same 

actual TTC, which in turn could result in risky road crossing decisions. 
Nonetheless, the results of the two prior experiments are limited in their 
generalizability to real traffic scenarios because relatively simple and 
somewhat artificial stimuli were used. The auditory stimuli were a pure 
tone (DeLucia, et al., 2016) or the sound of an idling combustion engine 
(Keshavarz, et al., 2017), on which the intensity profile corresponding to 
a direct constant-velocity approach in the auditory free field was 
imposed. The sounds were presented through a single loudspeaker 
located in front of the participants. These auditory stimuli were 
impoverished compared to an approaching vehicle in a real traffic sce-
nario, which provides a dynamic spatial sound field including reflections 
from the ground surface and sound from different vehicle noise sources 
likes tires, engine, transmission, and exhaust pipe, with significant 
variations in the vehicle sound depending on speed or selected gear. 
Thus, it is an open and important question whether the effect of the 
acoustic intensity on auditory TTC estimates is also observed with more 
detailed and realistic simulations of an approaching vehicle. 

In fact, the fidelity of the presented stimuli seems to play an 
important role in TTC estimation. Even the highly replicated size-arrival 
effect in the visual domain was reduced in some studies presenting real 
moving objects with full visual information (Cavallo & Laurent, 1988; 
Savelsbergh, Whiting, & Bootsma, 1991). Also, the relative weights 
assigned to auditory compared to visual cues were higher in our first 
study presenting extremely simple visual as well as auditory stimuli 
(expanding square on a computer screen, pure tone with increasing in-
tensity presented via a single speaker) (DeLucia, et al., 2016) than in our 
second study (Keshavarz, et al., 2017), where similarly simple auditory 
stimuli were combined with a high-fidelity visual simulation of an urban 
traffic scene. A plausible explanation of this pattern is that participants 
placed less attention on the overly simplistic auditory stimulus when a 
high-fidelity visual simulation of the approaching object was available. 

Thus, realistic high-fidelity auditory simulations of approaching 
vehicles are needed to gain reliable and ecologically valid data about the 
use of auditory information in TTC estimation and other traffic-relevant 
tasks. They should cover the following characteristics: First, realistic 
vehicle sounds should be presented, containing all relevant vehicle noise 
sources (tire, powertrain, and aerodynamic noise) as well as their 
dependence on speed, engine load etc. Second, when a vehicle ap-
proaches a pedestrian in the real world, there are dynamic changes in 
acoustic intensity (due to spherical spreading and air absorption), in 
frequency spectrum (due to frequency-dependent air absorption and 
comb-filter effects caused by interference between direct and reflected 
sound), as well as in interaural time and level differences (due to 
changes in the position of the vehicle relative to the observer). All these 
acoustic cues should be incorporated in the simulations. Third, partici-
pants should be able to explore the virtual scene by moving their heads 
as they would in the real world. 

However, we are not aware of any studies on auditory TTC estima-
tion using highly realistic and interactive spatial auralizations of moving 
vehicles. Previous studies presented monaural recordings of approach-
ing vehicles or synthesized vehicle sounds on a single loudspeaker (e.g., 
Keshavarz, et al., 2017; Schiff & Oldak, 1990), on stereo speakers 
(Pugliese, Barton, Davis, & Lopez, 2020), or via headphones (e.g., 
Rosenblum, Gordon, & Wuestefeld, 2000; Rosenblum, et al., 1993), so 
that an accurate reproduction of the spatial sound scene was not avail-
able. Other experiments presented binaural recordings of real vehicles 
(M. S. Gordon & Rosenblum, 2005), which provides spatial information 
but no opportunity to interact via head movements. Wu et al. (2018) 
used binaural synthesis to auralize traffic at a roundabout from a pe-
destrian’s point of view. However, no head-tracking was used and the 
moving sound sources were simulated based on recordings from a sta-
tionary car at a constant engine speed, and thus did neither contain tire 
noise, nor changes in engine noise linked to a variation in velocity or 
acceleration. Two recent studies used binaural recordings of real 
approaching vehicles in experiments on road-crossing decisions (Soares 
et al., 2020; Soares et al., 2021), which provide a very realistic sound 
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quality. However, binaural recordings represent only a single, specific 
head orientation and receiver ear height (i.e., the head orientation and 
height of the dummy head during the recordings), and thus participants 
were not able to interact with the virtual scene via head movements. In 
addition, in binaural recordings parameters such as the angle of 
approach of the vehicle, the simulated distance of the listener from the 
road, or the distance and TTC of the vehicle at a given point of time in 
the recordings cannot be changed during the experiments, which limits 
experimental control and the range of experimental conditions that can 
be presented. 

To overcome these limitations, we developed a novel interactive 
audiovisual virtual-reality (VR) system for the presentation of moving 
vehicles, which provides acoustic simulations of the relevant dynamic 
traffic scenarios at a higher degree of realism than in many previous 
studies in this field. The system generates highly realistic vehicle sounds 
because the simulations are based on acoustic recordings of real vehicles 
in multiple driving conditions, collected with several microphones 
attached to the vehicles’ chassis. The motion of the vehicle sound 
sources in space during the approach is accurately simulated via 
acoustical modeling, and sound field synthesis (e.g., Ahrens, Rabenstein, 
& Spors, 2014) is used to present the dynamic spatial sound fields cor-
responding to the real-world scenarios that are simulated. The system 
provides interactive simulations because listeners can interact via head 
movements, and the recorded vehicle sound can be presented at arbi-
trary approach angles and distances, making it possible to present for 
example exactly the same vehicle sound at different TTCs. This system 
enables us to present highly realistic and interactive simulations of ve-
hicles approaching in road-crossing scenarios, containing the whole set 
of auditory cues (intensity and spectral changes, interaural time- and 
level differences, Doppler frequency shifts, etc.) as in the real world. At 
the same time, the system can be used to conduct highly controlled VR 
experiments without challenging the participants’ safety. 

To answer the question of whether and to what extent the vehicle 
loudness influences TTC estimates (i.e., a potential intensity-arrival ef-
fect), we conducted an experiment using our novel audiovisual VR 
system. We compared TTC estimates for vehicles with the same motion 
parameters but presented at two different loudness levels differing by 
10 dB, to test the hypothesis that the intensity-arrival effect observed in 
our previous studies does also occur when realistic vehicle sounds are 
presented in an interactive spatial simulation. We also contrasted a 
condition where only auditory information about the approaching 
vehicle was available (auditory-only, A-only) and a condition where an 
interactive visual 3D simulation of the vehicle was presented in addition 
to the vehicle sounds (audiovisual, AV), in order to investigate whether 
the intensity-arrival effect occurs even when full visual information 
about the motion of the vehicle is available, and whether the effect is 
stronger when only auditory information is presented. In addition, we 
included sounds of a vehicle with internal combustion engine (ICEV) 
and an electric vehicle (EV), presented at the same loudness, to inves-
tigate if differences between the acoustic signatures of the two vehicle 
types, beyond a difference in loudness, affect pedestrians’ TTC 
estimates. 

2. Methods 

2.1. Design and implementation of the audio-visual VR simulation system 

We designed and implemented a high-performance interactive au-
diovisual VR system to investigate the audiovisual perception of 
approaching vehicles. The optical geometry of a vehicle does not change 
as a function of speed or acceleration. Thus, a visual VR simulation of 
vehicles approaching an observer can simply be obtained with readily 
available geometric techniques, implemented in current computer 
graphics. 

In contrast, the tire-road noise emitted by a vehicle dynamically 
depends on the velocity, tire and road surface characteristics (e.g., 

Kropp, Sabiniarz, Brick, & Beckenbauer, 2012); the aerodynamic noise 
also depends on the velocity, but it is preponderant only at high speeds 
(more than 100 km/h). The powertrain noise depends dynamically on 
engine speed and engine load, which, in turn, depend on factors like the 
selected gear, acceleration, road inclination, etc. 

Since we were not aware of completely convincing approaches for 
the simulation of tire, powertrain and aerodynamic noise in dynamic 
driving situations with changing speed, acceleration, and load condi-
tion, the auditory stimuli were based on acoustic recordings of real ve-
hicles. The recordings were collected while driving both an internal 
combustion engine vehicle (ICEV) and an electric vehicle with well- 
defined velocity profiles (various constant speeds, various conditions 
with acceleration) on a test track. In the present study, only the subset of 
constant-speed drives is used. TTC estimation for accelerating vehicles 
using the recordings of acceleration drives was studied, for example, in 
Wessels et al. (2022). We used a source-based approach, recording the 
vehicle sound with four free-field microphones mounted at different 
positions on the chassis. During the acoustic recordings, the trajectory of 
the vehicle was measured with highly precise GPS position tracking. In 
the auditory VR simulations, the microphone signals recorded on the test 
track are then used as sound sources in an acoustic VR simulation soft-
ware (Toolbox for acoustic scene creation and rendering – TASCAR; 
Grimm, Luberadzka, & Hohmann, 2019) and are animated on the basis 
of the GPS position tracking data. Using this approach, it is possible to 
present real vehicle sounds, and to simulate the exact motion of the car 
during the recordings. The interactive auditory VR simulations can be 
combined with interactive three-dimensional visual VR simulations 
presented stereoscopically on a head-mounted display. Further details 
regarding the acoustic recordings of the vehicle sounds and the audio-
visual simulation system are described in the following sections. 

2.1.1. Acoustic recordings of vehicle sounds 
The vehicles’ acoustic signals used in the simulation system are 

based on acoustic recordings of real cars driving on a test track of the 
Technical University of Darmstadt. All recordings took place on a dry 
asphalt road surface. The vehicles were two small passenger car models 
of the manufacturer Kia Motors. The ICEV was a gasoline-powered Kia 
Rio 1.0 T-GDI (2019, 1.0 l, 88 kW, 3 cylinders) with manual trans-
mission. The tires on the ICEV were Continental summer tires (Con-
tiSportContact 5, 205/45 R17). The EV was a Kia e-Niro (2019, 150 kW) 
with Michelin summer tires (Primacy 3, 215/55 R17). The EV was 
additionally equipped with an acoustic warning sound system (Acoustic 
Vehicle Alerting System; AVAS), which could be active at speeds be-
tween 0.5 km/h and 28 km/h, but could also be deactivated. The sound 
generated by the AVAS was compatible with the requirements described 
in UNECE R138 (2017). We made recordings of the EV with both active 
and inactive AVAS. However, in the present experiment, we only pre-
sented the EV without AVAS. We studied pedestrians’ TTC estimation for 
the EV with AVAS, for example, in Wessels et al. (under revision). 

Four free-field microphones (Roga MI-17) were mounted on the 
chassis of the vehicle at the following positions: on both sides of the 
vehicle above the axle of the front tires, centrally on the engine hood, 
and on the right side of the vehicle above the axle of the rear tire. The 
microphones above the tires were positioned at a height between 86 and 
101 cm above ground and captured primarily the tire-road noise. In 
contrast, the microphone on the hood captured primarily the powertrain 
noise. Thus, a realistic presentation of the vehicle sound was possible in 
the experiment. The microphone signals were recorded on an audio 
recording system (Sinus GmbH Soundbook MK2) located in the vehicle 
(audio resolution 24 bits, sampling frequency fs = 51.2 kHz). Addi-
tionally, a Garmin GPS receiver (recording rate: 1 Hz) and a Tentacle 
SyncE audio time code generator were connected to the Soundbook. The 
GPS receiver allowed for synchronization of the Soundbook system time 
with the GPS time, so that the temporal reference to the GPS position 
data in the JAVAD GPS receiver (see below) could be established. 

A GPS antenna (Trimble AG25) was installed centrally on the 
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vehicle’s roof and was connected to a high-performance GPS receiver 
(JAVAD Triumph LS, recording rate 10 Hz) inside the vehicle. Using the 
Real Time Kinematic method, the GPS position of the vehicle on the test 
track could be recorded with a precision of a few centimeters (e.g., El- 
Rabbany, 2002). The high precision of the method is achieved by 
evaluating the carrier phase of the satellite signals, processing signals 
from at least 5 satellites, and matching the data from the mobile receiver 
with data from a geostationary reference station. Here, we used a 
reference station provided by the Hessian State Office for Land Man-
agement and Geoinformation within the framework of SAPOS-GPPS 
(https://sapos.hvbg.hessen.de/), located at a distance to the test track 
of about 6 km. 

Post-processing of the raw GPS data from the JAVAD receiver and 
from the reference station was performed using the RTKLIB toolbox 
(https://www.rtklib.com/). In the “Kinematic” positioning mode, an 
extended Kalman filter was applied forward and backward to the time 
series of GPS data. At each time step in the GPS data, the arithmetic 
mean of the two filter passes was then used. A coordinate system was 
defined in which the vehicle’s position along the road was described as 
the x-axis (pointing into the direction of travel), the lateral position on 
the road as the y-axis (pointing towards the other side of the road) and 
the vertical position (height above the ground) as the z-axis. The 
calculated GPS positions were converted to positions in the local coor-
dinate system based on the World Geodetic System (WGS-84). The 
recorded GPS signal allowed the mapping of the vehicle position and the 
corresponding acoustic signal to the virtual environment used in the 
experiment, based on this coordinate system. In addition to the position 
data, the velocity vector and the acceleration vector were calculated 
from the GPS data at each time point, in the same local coordinate 
system. The position, velocity, and acceleration vectors were interpo-
lated to a sampling rate of 1000 Hz using spline interpolation (Matlab 
function interp1) to facilitate subsequent calculations. 

In addition to the acoustic recordings on the vehicle, an artificial 
head (Brüel & Kjaer 4100D) and a free-field microphone (Roga MI-17) 
were positioned stationary at a distance of 50 cm from the right edge 
of the road. The artificial head was located 100 cm and the free-field 
microphone 165 cm above the road surface. The signals from the 
dummy head and from the free field microphone were recorded for 
evaluation purposes only, they are not used in the acoustic simulations. 
The signals from the two microphones in the dummy head and the free- 
field microphone were recorded by a Sinus GmbH Soundbook MK1. In 
addition to the microphones, an audio time code generator (Tentacle 
SyncE) was connected, which was synchronized with the audio time 
code generator connected to the audio recording system inside the 
vehicle. Sensor signals were also recorded from an anemometer placed 
near the reference position. 

The precise implementation of driving profiles with specific constant 
speeds or accelerations was difficult in terms of driving. In addition, 
there were frequent issues with undesirable noise during the recordings. 
In particular, significant wind noise frequently occurred in the audio 
recordings at higher speeds, although we used wind protection on all 
microphones. For these reasons, we manually checked the driving pro-
files (velocity and acceleration) and the audio signals from all micro-
phones on the vehicle for each of the recordings obtained on the test 
track. Driving profiles with strong deviations from the intended constant 
speed or acceleration or significant unwanted noise were not used for 
the acoustic simulations. In the present study, we only presented sim-
ulations of vehicles approaching at a constant speed. 

2.1.2. Auditory VR simulation and sound reproduction 
A physically realistic interactive simulation of the dynamic spatial 

sound field corresponding to an urban traffic scene with an approaching 
vehicle was realized with the acoustic VR software TASCAR (Grimm, 
et al., 2019; https://www.tascar.org/). TASCAR offers dynamic pro-
cessing of the geometry of the acoustic scene (time-variable positions of 
(image) sound sources, absorbers and receivers), acoustic modeling of 

the sound transmission from the sources to the receiver, and sound field 
synthesis. TASCAR models the directional characteristic of sound sour-
ces, the distance-dependent change of the sound level caused by 
spherical spreading and air absorption, and the distance-dependent 
sound travel time (which can lead to, e.g., Doppler effects). Sound re-
flections on the ground and other surfaces are simulated by the image 
sound source method (Allen & Berkley, 1979), so that, for instance, 
time-variant comb-filter effects due to acoustical interference between 
reflected and direct sound are simulated. Due to the higher-order 
Ambisonics rendering (see below), dynamic changes in the interaural 
level and time differences resulting from changes of the position of the 
sound sources relative to the head of the listeners are also simulated, and 
listeners can interact with the acoustic scene by listening around with 
head movements. In the present experiment, the processing of the dy-
namic geometry of the acoustic scene was based on the GPS position 
data acquired during the acoustic recordings on the test track. Thus, the 
motion of the cars presented in the simulations was identical to the 
motion of the real cars on the test track. The position of the microphones 
relative to the car’s front along the left-right and front-back axes (see 
above) was taken into account in the acoustic simulations. Based on 
informal comparisons with the dummy head recordings obtained on the 
test track, the height of the virtual sound sources reproducing the signals 
of the microphones positioned over the axles was set to 1 cm above 
ground to avoid overly strong comb filter effects. This position also 
corresponds to the main acoustic source of the road-tire noise (contact 
point between tire and road). The simulated ear height of the receiver 
matched the actual ear height of each listener in an upright position. 

A spatial sound field was generated using sound field synthesis, 
namely 2D 7th-order Ambisonics (Ahrens, et al., 2014; Daniel, 2000; 
Gerzon, 1985). The Ambisonics approach assumes sound reproduction 
in an acoustic free field. When preparing the laboratory space, special 
attention was therefore paid to reducing acoustic reflections. The rect-
angular laboratory area containing the speaker array (dimensions: 570 
cm × 450 cm) was separated from the larger lab space (105 m2) with 
sound-absorbing acoustic curtains (Gerriets Bühnenvelours Ascona 570; 
570 g/m2; absorption coefficient of 0.95 for frequencies above 400 Hz). 
The parts of the walls and ceiling adjacent to the speakers were lined 
with Basotect acoustic foam panels (BASF; 10 cm thickness, absorption 
coefficient of at least α = 0.9 at frequencies above 400 Hz). 

Within the rectangular laboratory area, a circular array of 16 loud-
speakers (Genelec 8020DPM-7) was installed. The radius was 2.0 m, the 
minimum distance of the loudspeakers to the walls was about 40 cm, and 
the minimum distance to the acoustic curtain was about 20 cm. The 
loudspeakers were positioned at an equal angular distance of 22.5◦. The 
tweeters of the two-way speakers were located 160 cm above the floor 
and thus close to the average upright ear height of adults (C. C. Gordon 
et al., 1989). The floor within the loudspeaker array was covered with a 
thick carpet (IKEA Stoense), which also covered the loudspeaker bases. 
The monitors and computers used for the experiment were located 
adjacent to the loudspeaker array and were also shielded with acoustic 
foam panels. 

The simulated auditory traffic scene was presented using the Ambi-
sonics loudspeaker array. The 16 loudspeakers of the array were 
controlled by an audio converter (Ferrofish Pulse 16, 24 bit audio res-
olution, fs = 44.1 kHz), which received the audio signals from an RME 
HDSPe RayDAT audio card in the Linux computer running TASCAR 
(Ubuntu 16.04 LTS, Intel Core i9-9900 K CPU @ 3.60 GHz, Quadro 
P1000). Acoustic calibration of the loudspeaker array was performed 
using the TASCAR Speaker Calibration Tool and a sound level meter 
(Norsonic Nor131 with Roga MP40 free field microphone) placed in the 
center of the loudspeaker array and 165 cm above the floor. During 
calibration, level differences between the 16 loudspeakers were 
compensated and the sound pressure levels of a point source and a 
diffuse sound field were calibrated. The sound levels from the calibrated 
microphones mounted on the cars during the vehicle recordings on the 
test track were used to set the sound levels of the simulated sound 
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sources. 

2.1.3. Visual VR simulation 
The interactive auditory VR simulation was combined with visual VR 

simulations of the traffic scenes. The participants viewed the visual 
traffic scene stereoscopically wearing a head-mounted display (HTC 
Vive Pro; 1440×1600 pixels per eye, 90 Hz frame refresh rate, 110◦ field 
of view). Laser-based head and motion tracking of the HTC Vive Pro 
enabled the transformation of real head movements into virtual head 
movements, thus allowing participants to explore the visual scene. The 
height of the virtual camera above the simulated floor corresponded to 
the real eye level of the test person, as recorded by the head tracking. 
The simulations were created using the VR-software WorldViz Vizard 
5.0 on a Windows computer (Intel Core i9-9900X CPU @ 3.50 GHz, 
Nvidia Quadro RTX 4000). The Vizard control script also sent commands 
controlling the corresponding acoustic simulations in TASCAR via the 
OSC network protocol (http://opensoundcontrol.org/), so that the 
auditory and visual VR simulations were synchronized in time. 

2.2. Stimuli and procedure 

2.2.1. Audio-visual simulated traffic scenes 
In the experiment, audio-visual virtual traffic scenes were presented 

in which a vehicle approached the position of the participant at a con-
stant speed and on a straight trajectory on the right lane of a two-lane 
road (see Fig. 1). Participants experienced the virtual scene from a 
pedestrian perspective. Their position in the virtual scene was 1 m away 
from the right curb, typical for a pedestrian intending to cross the road. 
In one of the two modality conditions, the approaching car was audible 
and visible (audiovisual presentation of the vehicle, AV). In the other 
modality condition, only the street scene was visible while the car was 
not visible but audible (auditory-only presentation of the vehicle, A- 
only). 

The visual virtual road scene was modelled after the Eislebener 
Straße in Berlin, using 3ds Max 2020.2 and 3D data provided by the 
Senate Department for Urban Development and Housing of the City of 

Berlin (https://www.stadtentwicklung.berlin.de/planen/stadtmodell 
e/de/digitale_innenstadt/3d/index.shtml). The 3D model of it depic-
ted an urban two-lane road (length approx. 300 m, width 6.5 m, lane 
width 3.25 m) without bends or curves as well as a uniform, gapless 
front of houses at both roadsides (see Fig. 1). The distance between the 
house fronts on the right side of the road and the right lane marker was 
8.4 m. The distance between the house fronts on the left side of the road 
and the right lane marker was 15.6 m. Unlike in the original street, the 
virtual street scene did not include any bicycles, signs, parking vehicles, 
etc. White road markings were added as well as a blue line reaching from 
one side of the road to the other. The blue line was placed at a distance of 
50 cm to the left of the participant’s position in the virtual scene and 
served for orientation in the virtual environment. The approaching car 
was modeled after a red Mitsubishi Colt (L × W × H = 3.810 m × 1.895 
m × 1.520 m). A male avatar with a neutral facial expression was pre-
sented on the driver’s seat. The same visual car model was presented on 
all trials. It thus did not differ between the vehicle types (ICEV versus 
EV) or loudness levels. 

In the simulated acoustic scene, the geometry of the ground surface 
and the house fronts were identical to the visual scene. The surfaces 
were simulated with plausible acoustic reflection properties. Based on 
ISO 9613-2:1999-10 (1999), the reflectance of the floor surface was set 
to ρ = Ir/I0 = 1.0, where Ir is the acoustic intensity of the reflected sound 
wave and I0 is the intensity of the incoming wave. Thus, we modeled 
both the road surface and the adjacent ground surface areas as acous-
tically hard. Based on the same standard, the reflectance of the house 
fronts was set to ρ = 0.8. The sound reflections were modeled with an IIR 
low pass filter of first order with a cut-off frequency of 5 kHz. The 
parameter scattering in TASCAR describes random deviations in the 
sound reflection and was set to a value of 0.5. A first-order Ambisonics 
recording from a quiet residential area was presented as background 
noise (LAeq = 37.5 dB). 

Fig. 2 shows the sound spectra of the ICEV (left column) and the EV 
(right column) at the three different constant speeds (rows) in the 
simulated urban scene. The spectra were analyzed with the vehicles 
placed at a static position in the simulated urban scene, which was 10 m 
down the road from the listener’s position against the direction of travel 
of the vehicles. The sounds were recorded by a virtual omnidirectional 
microphone placed at the same virtual position as the listener’s head in 
the experiment. The recorded audio signals were normalized to an RMS 
level of 0 dB. For the ICEV, the characteristic and rotational-speed 
dependent harmonics are clearly visible. The EV spectra do not show 
any pronounced harmonics, as expected. 

2.2.2. Time-to-collision estimation: Prediction-motion task 
Time-to-collision estimates were obtained in a prediction-motion 

task (Schiff & Detwiler, 1979), which is one of the tasks most 
frequently used in the literature to study TTC estimation. Participants 
wore the head-mounted display, stood in the center of the loudspeaker 
array and experienced the simulated audiovisual traffic scene described 
above. Their position in the virtual scene was 50 cm away from the right 
curb, typical for a pedestrian intending to cross the road. When they 
turned their heads to the left side, they were able to see the car along the 
road. They were instructed to press a button on the controller to start the 
car’s motion. The approaching car was presented for 3 s before it was 
“occluded”, that is, it was then no longer audible and visible. On each 
trial, we selected a random time interval of 3 s from the available 
recording duration. Thus, the sound of the car differed slightly from trial 
to trial for each combination of vehicle type and speed, increasing the 
ecological validity. The temporal and spatial distance of the car at oc-
clusion was defined by the different simulated TTCs and velocities (see 
below). Participants were instructed to pull the trigger of the controller 
when they thought that the approaching vehicle would have reached the 
blue line on the road, if the vehicle had continued to move towards them 
with the same constant velocity after occlusion. The time interval be-
tween the occlusion and the manual response was taken as the 

Fig. 1. Monoscopic view of the visual virtual street scene and the approaching 
vehicle, from the participants’ perspective. 
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participant’s estimate of the TTC of the vehicle at the moment of oc-
clusion. In one experimental condition (audiovisual, AV), the vehicles 
were visible and audible, while in the other experimental condition 
(auditory-only, A-only), the car was audible but not visible. In the A-only 
condition, the participants still saw the virtual street scene on the HMD. 
To get familiar with the experimental setting and the task, participants 
completed two training blocks with 15 trials each. In one training block, 

the car was audible and visible, in the other training block it was only 
audible, the order of which was also counterbalanced across participants 
(as described below). Subsequently, participants completed 16 experi-
mental blocks. After each block, participants were given the opportunity 
to take a break. To detect potential motion-sickness symptoms 
throughout the experiment, the participants rated their motion-sickness 
on the Fast Motion-Sickness Scale ranging from 0 (“no sickness at all”) to 

Fig. 2. Sound spectra of the ICEV (left column) and the EV (right column) at 10, 30 and 50 km/h (rows) in the simulated urban scene. The spectra were recorded 
with the vehicles placed at a static position in the virtual scene, at a distance of 10 m down the road from the virtual position of the listener. 
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20 (“frank sickness”) (Keshavarz & Hecht, 2011) after every second 
block. No issues with motion sickness occurred, except for a single 
participant, who did not complete the experiment due to motion- 
sickness symptoms. 

In the TTC-estimation task, all participants received all experimental 
conditions in a within-subjects design. The vehicles approached at 
constant velocities of 10, 30, and 50 km/h, all of which can be considered 
relevant in urban traffic scenarios. Each vehicle type (ICEV and EV) was 
presented at two different loudness levels, at each of the three speeds. At 
the loudness level LICEV, the ICEV was presented at its original sound 
level (as recorded on the test track), and the EV was presented at the 
subjectively same loudness, based on the individual loudness matches 
(see below). At the loudness level LICEV+10 dB, the level of both vehicles 
was increased by 10 dB relative to the level LICEV. Thus, in this condition 
the vehicle sounds were approximately two times louder than at the 
loudness level LICEV (Jesteadt & Leibold, 2011), but the two vehicles 
were still matched in loudness. We presented three different TTCs at 
occlusion onset (2.0 s, 3.5 s, 5.0 s), defined as the time the vehicle would 
have needed to arrive at the participant’s position after the moment in 
which it disappeared from the display. The resulting 36 combinations of 
vehicle type, loudness level, speed, and TTC were presented once and in 
a randomized order within each of the 16 blocks. The modality condition 
(A versus AV) was varied blockwise and changed after each completed 
block. The order was counterbalanced across participants. In the first 
block, the car was visible and audible (AV) for participants with an odd 
code number, while it was only audible (A-only) for participants with an 
even code number. The total of 72 experimental conditions (modality 
condition × vehicle type × loudness level × speed × TTC) were pre-
sented 8 times, resulting in 576 experimental trials per participant. 

2.2.3. Loudness-matching task 
Before the TTC-estimation task, we obtained individual loudness 

matches between the sound of the ICEV and the EV at each of the three 
presented constant velocities (10, 30 and 50 km/h). These were used to 
present the ICEV and the EV at equal loudness in the TTC-estimation 
task. Because the loudness-matching task presented only auditory 
stimuli, participants did not wear the head-mounted display. They stood 
in the center of the loudspeaker array inside the lab space, just as in the 
main TTC-estimation task. Participants were instructed to listen to 
several pairs of audio signals, and to indicate for each pair by pressing 
one of two response buttons whether they had perceived the first or the 
second audio signal as louder. Each sound pair consisted of the audio 
signals of an EV and an ICEV, both at the same speed of either 10, 30, or 
50 km/h. The acoustic recordings of the two vehicles available at the 
three velocities ranged in duration between 7 s and 30 s. On each trial, 
we extracted a random time interval of 1000 ms from each of the two 
vehicle recordings to be presented, in order to increase the ecological 
validity. The two 1000 ms vehicle sounds were presented with a silent 
inter-stimulus interval of 800 ms. Using TASCAR, we simulated the front 
of the cars to be at a static position on the simulated road at a distance of 
3 m down the road from the participant. When the response had been 
given, the next trial started with an inter-trial interval of 500 ms. 

In each experimental block, only one pair of sounds of ICEV and EV 
at the same velocity was presented. Using an adaptive procedure, we 
adjusted the sound level of one of the vehicle sounds according to the 
participants’ responses. The sound being adapted in level is termed the 
comparison in the following. The level of the other sound, termed the 
standard, was fixed and corresponded to the originally recorded sound 
level of the vehicle at a distance of 3 m down the road from the listener. 
Using four randomly interleaved adaptive tracks for each of the three 
velocities, we varied whether the ICEV or the EV served as the com-
parison, and whether the comparison was presented first or second 
within the trial, aiming to reduce the effect of response biases (cf. Buus, 
Florentine, & Poulsen, 1997; Oberfeld et al., 2012). In each adaptive 
track, we applied a 1-up, 1-down adaptive rule (Levitt, 1971) tracking 
the 50%-point on the psychometric function. Each adaptive track started 

with the comparison at the original recorded sound level of the 
respective vehicle. If the participant responded that the comparison was 
louder than the standard, the level of the comparison presented on the 
subsequent trial was decreased; otherwise, it was increased. The initial 
increment or decrement in level was 5 dB. After four reversals (i.e., 
“peaks” and “valleys” in the adaptive track; Levitt, 1971), the track 
continued with a smaller step size of 2 dB until either another eight 
reversals had occurred or 50 trials had been presented, whichever 
happened first. If a track was completed according to these rules, it was 
still presented with a low probability to avoid presenting only a few 
tracks that were not yet finished at the end of the loudness matching 
task. For each adaptive track, the arithmetic mean of the comparison 
levels at the final eight reversals (with small step size) was used to 
determine the change in sound level required to make the comparison 
equally loud as the standard (i.e., the loudness match). If < 4 reversals 
with small step size were obtained or if the standard deviation of the 
comparison level at the reversals with small step size was greater or 
equal to 5 dB, the corresponding adaptive track was excluded from the 
analysis. Based on these criteria, 5 adaptive tracks were excluded. 

Three blocks were presented in random order, each presenting one of 
the three velocities. Subsequently, these three blocks were repeated 
again in random order, so that each participant completed a total of six 
blocks. For each participant, the loudness match between the EV and the 
ICEV, averaged across the two blocks presented for each of the three 
velocities, was used for setting the sound levels of the EV in the 
following TTC estimation task. 

2.2.4. Experimental sessions 
The experiment consisted of two sessions. In the first session, par-

ticipants received information about the upcoming experiment, gave 
written informed consent and completed the vision and hearing tests. 
The experimenter additionally measured the participants’ ear height 
and inter-pupillary distance. The individual ear height was used to set 
the height of the simulated receiver above the ground surface accord-
ingly, and the individual inter-pupillary distance was used to adjust the 
distance between the two displays of the HMD. The loudness matching 
task was also part of the first session, while the TTC-estimation task was 
presented in the second session. At the end of the second session, par-
ticipants filled in a questionnaire asking for demographic data. The 
experiment included two obligatory longer pauses with a duration of at 
least 15 min each. In addition, participants had a shorter break after 
each experimental block (i.e., after each 15–20 min of testing). The 
actual time on the TTC-estimation task was about 2 h. The total duration 
of the experiment including both sessions and breaks was about 3–5 h. 

2.3. Participants 

We recruited 29 participants, but one participant aborted the 
experiment due to motion-sickness symptoms during testing. The data of 
this participant were excluded from the analyses. The sample thus 
comprised 28 participants (22 female, 6 male; age: M = 24.21 years, SD 
= 5.70 years) with normal or corrected-to-normal vision as well as 
normal hearing. Visual acuity, stereoscopic vision and hearing ability 
were assessed prior to testing. Audiometric hearing thresholds were 
measured bilaterally using Békésy audiometry (von Békésy, 1947) with 
pulsed 270 ms pure tones. The hearing thresholds on both ears of all 
participants were measured in a frequency spectrum between 125 Hz 
and 4000 Hz and did not exceed 20 dB HL. The average asymmetry in 
the hearing thresholds between left and right ear at octave frequencies 
between 125 Hz and 4 kHz was smaller than 11 dB, except for one 
participant with an asymmetry of 20 dB. Landolt’s C test of the Freiburg 
Visual Acuity Test (Bach, 1996) was used to test for the required visual 
acuity of ≥ 1.0. The stereoscopic acuity was tested with a Titmus Test 
(Bennett & Rabbetts, 1998), presented on the HMD. Here, the partici-
pants had to provide the correct response on at least 6 of 9 trials, which 
presented binocular disparities of 800, 400, 200, 140, 100, 80, 60, 50 
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and 40 s of arc. 
The experiment was conducted in accordance with the ethical prin-

ciples of the Declaration of Helsinki and the Ethics Committee of the 
Institute of Psychology of the Johannes Gutenberg University Mainz 
(approval number: 2019-JGU-psychEK-S011). All participants vol-
unteered for course credit or monetary reward (7 € per hour). Prior to 
testing, but after study information was provided and possible risks were 
explained, they gave their written consent. 

3. Results 

3.1. Loudness matches 

For each sound pair of the EV and ICEV at the same speed of either 
10, 30 or 50 km/h, we calculated the change in sound level (gain) 

required to make the EV equally loud as the ICEV, individually for each 
participant. Positive values indicate that the sound level of the EV had to 
be increased in order to match the loudness of the ICEV at the same 
speed. As Fig. 3 shows, the level of the EV had to be increased at all 
speeds to make it equally loud as the ICEV. On average, the required gain 
was highest at the slowest speed and lowest at the fastest speed. This is 
the expected pattern, because the tire noise, which can be assumed to be 
rather similar for the two car types, dominates at speeds above 20 km/h, 
so that differences in the engine sound levels should have the strongest 
effect at the slowest speed. At the slowest speed, the sound level of the 
EV had to be increased in level by 10.04 dB on average to make it equally 
loud as the ICEV. Thus, at its original sound level, the EV was about half 
as loud as the ICEV at a speed of 10 km/h. A repeated-measures ANOVA 
(rmANOVA), using a multivariate approach, showed a significant effect 
of speed on the loudness matches, F(2, 26) = 255.97, p <.001, η2

p = 0.95. 

Fig. 3. Histograms of the individual change in the sound level (gain) of the EV required to match the loudness of the ICEV at the same speed. Positive values indicate 
that the sound level of the EV had to be increased in order to match the loudness of the ICEV at the same speed. The colored vertical lines represent the mean gain per 
speed. The colored transparent boxes around the mean gain indicate 95 % confidence intervals. 

Fig. 4. Mean estimated TTC as function of the presented TTC (x-axis) and modality condition (left panel: A-only, car not visible; right panel: AV, car visible). Blue 
squares: internal combustion engine vehicle (ICEV) at its original loudness level (LICEV). Blue circles: ICEV at LICEV + 10 dB. Green triangles: electric vehicle (EV) at 
LICEV. Green diamonds: EV at LICEV + 10 dB. Solid lines: original loudness level of the ICEV (LICEV). Dotted lines: loudness level increased by 10 dB (LICEV+10dB). Error 
bars represent ± 1 SE of the mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Three two-sided paired-samples t-tests with a correction for multiple 
comparisons (Hochberg, 1988) showed that the mean change in gain of 
the EV differed significantly between each pair of speeds at an α-level of 
0.001 (10 vs. 30 km/h: t(27) = 16.10, Cohen’s (1984) dz = 3.04; 10 vs. 
50 km/h: t(27) = 23.01, dz = 4.35; 30 vs. 50 km/h: t(27) = 10.64, dz =

2.01). 

3.2. TTC estimates 

Prior to the analyses, we applied a Tukey (1977) criterion that 
excluded outlying TTC estimates in each combination of participant and 
experimental condition (modality condition × vehicle type × speed ×
loudness level × TTC). From a total number of 16,128 TTC estimates, 65 
were located more than three interquartile ranges above the third 
quartile or below the first quartile and were therefore excluded (0.40%). 
We aggregated the remaining TTC estimates for each combination of 

Table 1 
Results of the rmANOVA for the A-only condition (cars not visible). Displayed 
are F-values, numerator degrees of freedom, denominator degrees of freedom, p- 
values and partial η2 (η2

p).  

Factor F dfNum dfDen p η2
p 

Loudness  119.41 1 27  <0.001  0.82 
Vehicle  0.87 1 27  0.359  0.03 
TTC  56.26 2 26  <0.001  0.81 
Velocity  34.72 2 26  <0.001  0.73 
Loudness × vehicle  0.05 1 27  0.823  0.00 
Loudness × TTC  0.51 2 26  0.610  0.04 
Vehicle × TTC  0.28 2 26  0.762  0.02 
Loudness £ velocity  12.47 2 26  <0.001  0.49 
Vehicle £ velocity  3.72 2 26  0.038  0.22 
TTC £ velocity  14.72 4 24  <0.001  0.71 
Loudness × vehicle × TTC  2.12 2 26  0.140  0.14 
Loudness × vehicle × velocity  0.43 2 26  0.656  0.03 
Loudness × TTC × velocity  2.69 4 24  0.055  0.31 
Vehicle × TTC × velocity  1.34 4 24  0.282  0.18 
Loudness × vehicle × TTC ×

velocity  
1.94 4 24  0.136  0.24  

Fig. 5. Mean estimated TTC as function of the presented TTC (x-axis), velocity (columns), and modality condition (upper row: A-only, car not visible; lower row: AV, 
car visible). Blue squares: internal combustion engine vehicle (ICEV) at original loudness (LICEV). Blue circles: ICEV at LICEV + 10 dB. Green triangles: electric vehicle 
(EV) at LICEV. Green diamonds: EV at LICEV + 10 dB. Dotted lines: LICEV + 10 dB. Solid lines: LICEV. Error bars represent ± 1 SE of the mean. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Results of the rmANOVA for the AV condition with visible cars. Displayed are F- 
values, numerator degrees of freedom, denominator degrees of freedom, p- 
values and partial η2 (η2

p).  

Factor F dfNum dfDen p η2
p 

Loudness  26.19 1 27  <0.001  0.49 
Vehicle  4.21 1 27  0.050  0.13 
TTC  83.56 2 26  <0.001  0.87 
Velocity  36.83 2 26  <0.001  0.74 
Loudness × vehicle  0.16 1 27  0.694  0.01 
Loudness × TTC  0.43 2 26  0.654  0.03 
Vehicle × TTC  2.38 2 26  0.112  0.15 
Loudness £ velocity  19.77 2 26  <0.001  0.60 
Vehicle × velocity  2.52 2 26  0.100  0.16 
TTC £ velocity  6.73 4 24  0.001  0.53 
Loudness × vehicle × TTC  0.14 2 26  0.873  0.01 
Loudness × vehicle × velocity  0.29 2 26  0.750  0.021 
Loudness × TTC × velocity  0.97 4 24  0.442  0.14 
Vehicle × TTC × velocity  0.72 4 24  0.588  0.11 
Loudness × vehicle × TTC ×

velocity  
1.47 4 24  0.241  0.20  
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participant and experimental condition. Fig. 4 shows the mean esti-
mated TTC as a function of the presented TTC, for each combination of 
modality condition, car, and loudness level. For the A-only condition 
with invisible vehicles (left panel), the TTC was estimated considerably 
shorter at the higher loudness level (LICEV+10 dB; solid lines and symbols) 
than at the lower loudness level (LICEV; dashed lines and open symbols). 
For the AV condition with visible vehicles (right panel), we observed a 
similar pattern, although the difference between the estimated TTCs at 
the two different loudness levels was less pronounced. At each loudness 
level, the TTC estimates for the loudness-matched ICEV and EV were 
virtually identical. Thus, the descriptive data show longer TTC estimates 
for quieter vehicles, even when full visual information was available, 
while the vehicle type (ICEV versus EV) had virtually no effect at a given 
loudness level. 

To examine the effect of loudness on the TTC estimations when the 
car was not visible and when it was visible, we conducted separate 
rmANOVAs, one for each modality condition, with a multivariate 
approach, and followed up with pairwise paired-samples t-tests with 
Hochberg-correction (Hochberg, 1988), where necessary. We first focus 
on the effects of loudness level and vehicle type, which are central to the 
present study, and subsequently discuss effects that are related to TTC 
estimation in more general terms. 

Table 1 shows the results of the rmANOVA for the A-only condition. 
In this condition, we observed a strong significant effect of the loudness 
level, as expected. The TTC was estimated significantly shorter for 
louder vehicles (M = 2.50 s, SD = 1.19 s) compared to quieter vehicles 
(M = 3.24 s, SD = 1.41 s), which is compatible with an intensity-arrival 
effect (DeLucia, et al., 2016). The effect of loudness level on the TTC 

estimates was large in terms of the difference in milliseconds (742 ms, 
SD = 359 ms) between the mean estimates. It was also observed very 
consistently across participants, indicated by a large statistical effect size 
of dz = 2.07. The loudness level × velocity interaction was significant. As 
shown in Fig. 5, the effect of loudness on the TTC estimates was smaller 
at the lowest compared to the two higher velocities in the A-only 
condition. 

The effect of vehicle type was not significant. Thus, at equal loud-
ness, the different acoustic signatures of the ICEV and EV did not play a 
significant role. As displayed in the upper left panel of Fig. 5, the largest 
but still only slight descriptive difference between the TTC estimates for 
ICEVs and EVs in the A-only condition was observed at a velocity of 10 
km/h. This pattern is compatible with the more prominent difference 
between the acoustic signature of the ICEV and EV, because tire noise 
dominates at higher speeds. A dependency of the effect of vehicle type 
on the velocity was, indeed, indicated by a significant vehicle type ×
velocity interaction in the rmANOVA, but follow-up paired samples t- 
tests between the TTC estimates for the ICEV and the EV at each velocity 
were all non-significant with Hochberg correction at an α-level of 0.050. 

Table 2 shows the results of the rmANOVA for conditions with visible 
cars (AV) and loudness-matched ICEV and EV. Even when full visual 
information about the approaching vehicle was available, we still 
observed a significant effect of the loudness level, compatible with an 
intensity-arrival effect, although reduced in comparison to the A-only 
condition (see Fig. 4). As in the A-only condition, the TTC of louder 
vehicles (M = 3.48 s, SD = 1.50 s) was estimated shorter than for quieter 
vehicles (M = 3.62 s, SD = 1.49 s). The statistical effect size was also 
reduced in comparison to the A-only condition, dz = 0.97, but can still be 
considered large according to Cohen (1988). There was a non-significant 
trend towards shorter TTC estimates for the EV compared to the ICEV. As 
in the A-only condition, the loudness × velocity interaction was signif-
icant, showing a stronger effect of loudness level at the higher velocities 
compared to the lowest. Post-hoc paired samples t-tests with Hochberg 
correction showed that at an α-level of 0.05 the effect of loudness was 
significant and most prominent at 50 km/h, t(27) = 7.53, dz = 1.42, and 
also significant at 30 km/h, t(27) = 3.10, dz = 0.59. At 10 km/h, the 
loudness effect did not reach significance, t(27) = 1.92, dz = 0.36. These 
effect sizes highlight the relevance of vehicle loudness at higher veloc-
ities in the AV condition. 

3.3. Effects involving presented TTC and velocity 

Turning to the effects not involving loudness level or vehicle type, in 
the A-only condition, the effect of presented TTC on the estimated TTCs 
was significant. Thus, the participants were able to perceive the differ-
ences in presented TTC, even when only auditory information was 
available. However, the TTC estimates showed a pronounced regression- 
to-the-mean pattern. An increase of the presented TTC by 3.0 s (2.0 s 
versus 5.0 s) resulted in a change in the mean estimated TTC of <1.5 s. 
There was a significant effect of velocity on the TTC estimates. On 
average, the TTC estimates were longest at 30 km/h, shortest at 10 km/ 
h, and intermediate at 50 km/h. The TTC × velocity interaction was also 
significant. At the longest presented TTC, the mean TTC estimates at the 
two highest speeds were virtually identical, while at the shorter TTCs, 
the mean TTC estimate was longer at 30 km/h compared to 50 km/h 
(Fig. 5). 

In the AV condition, the effect of presented TTC on the TTC estimates 
was also significant, and the mean estimates were closer to the presented 
TTC, showing only a weak regression-to-the mean pattern. Participants 
slightly overestimated presented TTCs of 2.0 s and 3.5 s by approxi-
mately 200 ms, while they underestimated the longest TTC of 5.0 s by 
approximately 400 ms. The effect of speed was significant. In contrast to 
the A-only condition, the estimated TTC increased monotonically with 
increasing velocity in the AV condition. The increase in estimated TTC 
with increasing velocity is compatible with a size-arrival effect (DeLu-
cia, 1991). At a given presented TTC and given the constant size of the 

Table A1 
Results of the five-factorial rmANOVA using a multivariate approach. Displayed 
are F-values, numerator degrees of freedom, denominator degrees of freedom, p- 
values and partial η2 (η2

p).  

Factor F dfNum dfDen p η2
p 

Modality  47.88 1 27  <0.001  0.64 
Loudness  117.77 1 27  <0.001  0.81 
Vehicle  4.44 1 27  0.045  0.14 
TTC  75.83 2 26  <0.001  0.85 
Velocity  40.06 2 26  <0.001  0.75 
Modality £ loudness  89.71 1 27  <0.001  0.77 
Modality × vehicle  0.13 1 27  0.724  0.00 
Loudness × vehicle  0.01 1 27  0.911  0.00 
Modality £ TTC  73.75 2 26  <0.001  0.85 
Loudness × TTC  0.58 2 26  0.567  0.04 
Vehicle × TTC  1.69 2 26  0.205  0.11 
Modality £ velocity  32.90 2 26  <0.001  0.71 
Loudness £ velocity  18.94 2 26  <0.001  0.59 
Vehicle × velocity  3.67 2 26  0.039  0.22 
TTC £ velocity  9.32 4 24  <0.001  0.61 
Modality × loudness × vehicle  0.20 1 27  0.656  0.01 
Modality × loudness × TTC  0.37 2 26  0.697  0.03 
Modality × vehicle × TTC  0.44 2 26  0.650  0.03 
Loudness × vehicle × TTC  1.20 2 26  0.318  0.08 
Modality × loudness × velocity  2.42 2 26  0.109  0.16 
Modality × vehicle × velocity  2.66 2 26  0.090  0.17 
Loudness × vehicle × velocity  0.40 2 26  0.675  0.03 
Modality £ TTC £ velocity  12.08 4 24  <0.001  0.67 
Loudness × TTC × velocity  1.38 4 24  0.271  0.17 
Vehicle × TTC × velocity  1.41 4 24  0.261  0.19 
Modality × loudness × vehicle ×

TTC  
0.41 2 26  0.673  0.03 

Modality × loudness × vehicle ×
Velocity  

0.40 2 26  0.673  0.03 

Modality × loudness × TTC ×
velocity  

0.92 4 24  0.460  0.13 

Modality × vehicle × TTC ×
velocity  

0.67 4 24  0.620  0.10 

Loudness × vehicle × TTC ×
velocity  

2.19 4 24  0.101  0.27 

Modality × loudness × vehicle ×
TTC × velocity  

0.36 4 24  0.836  0.06  

D. Oberfeld et al.                                                                                                                                                                                                                                



Accident Analysis and Prevention 175 (2022) 106778

11

simulated visual object, the optical size of faster-travelling vehicles was 
smaller than for slower-travelling vehicles. Because in the AV condition 
the cars were also audible, the intensity-arrival effect could have played 
an additional role. The TTC × velocity interaction was also significant. 
The effect of velocity on the TTC estimates increased with the presented 
TTC. 

3.4. Effects involving the modality condition (A-only versus audio-visual) 

To confirm the differences in the TTC estimates between the A-only 
and the AV condition, we additionally computed a five-factorial rmA-
NOVA with a multivariate approach, including the additional factor 
modality condition. The results are shown in the Appendix (Table A.1). 
This analysis confirmed that the loudness level had a significant effect on 
the TTC estimates across the two modality conditions. A significant 
loudness × modality condition interaction confirmed that this effect was 
more pronounced in the A-only condition where the cars were not 
visible (mean difference between the TTC estimates at the two loudness 
levels MDif = 0.74 s) than in the AV condition where the cars were both 
audible and visible (MDif = 0.14 s). That is, participants relied more 
strongly on the vehicle loudness when no visual information were pre-
sent. Across modality conditions, the loudness × velocity interaction 
was significant, showing a stronger effect of loudness at the two higher 
velocities compared to the lowest velocity. Also, the effect of vehicle 
type was significant across the two modality conditions, although sta-
tistically and numerically small, with slightly longer mean TTC esti-
mates for the ICEV than for the EV. 

The modality condition × TTC interaction was significant, confirm-
ing the stronger regression-to-the-mean pattern in the A-only compared 
to the AV condition. The modality condition × velocity interaction was 
also significant, confirming the different dependence of the mean TTC 
estimates on velocity in the two modality conditions, which we 
described above. Finally, there was a significant modality condition ×
TTC × velocity interaction. As Fig. 5 shows, the mean TTC estimates 
increased between 10 km/h and 30 km/h for all presented TTCs and 
both modalities. For visible cars (AV), the TTC estimates increased 
slightly between 30 km/h and 50 km/h at the two longer TTCs but were 
at a similar level at the shortest TTC. In contrast, in the A-only condition, 
the TTC estimates at 30 km/h and 50 km/h were at a similar level at the 
longest TTC, but even decreased between 30 km/h and 50 km/h at the 
two shorter TTCs indicating a strong underestimation of TTC. As 
different combinations of velocity and TTC result in different distances, 
this three-way interaction might hint at a different reliance on distance 
information in the AV compared to the A-only condition. DeLucia, et al. 
(2016) and Keshavarz, et al. (2017) reported that auditory TTC esti-
mation is more strongly based on distance-related heuristics than visual 
TTC estimation. 

4. Discussion 

We introduce a novel interactive audiovisual virtual-reality system 
for traffic scenarios that allows us to study TTC estimations for 
approaching vehicles with a higher degree of realism than in previous 
studies on TTC estimation and road crossing decisions. The system 
presents highly realistic and physically plausible auditory simulations of 
approaching vehicles, based on recordings of real vehicles, acoustic 
modeling of the sound propagation from the sound sources to the 
receiver, and rendering of the dynamic spatial sound field via sound 
field synthesis (higher-order Ambisonics). The simulated auditory 
scenes provide a full range of dynamic monaural and binaural cues 
available in a real traffic scenario. The auditory simulations are com-
plemented by interactive high-fidelity visual simulations presented on a 
VR headset with head tracking. 

Using this system, we examined TTC estimations from a pedestrian 
perspective for ICEVs and EVs with the same loudness, approaching at a 
constant speed (10 to 50 km/h) and presented only auditorily (A-only; 

car not visible) or audiovisually (AV; car audible and visible). We varied 
the loudness level of the approaching vehicles to investigate whether the 
TTC overestimation for softer compared to louder approaching sound 
sources observed in previous studies (DeLucia, et al., 2016; Keshavarz, 
et al., 2017), which used somewhat impoverished and artificial auditory 
stimuli, is also found when realistic acoustic vehicle simulations are 
presented. As expected, the results showed TTC overestimation for softer 
compared to louder approaching sound sources (intensity-arrival effect; 
DeLucia, et al., 2016), which not only occurred within the A-only but 
also within the AVcondition. Thus, this study contributes to the under-
standing of auditory heuristics processing with and without additional 
visual information, which has important scientific and practical 
implications. 

With highly realistic and thus ecologically valid vehicle simulations, 
the intensity-arrival effect was massive in the A-only condition of the 
present study (mean difference of 740 ms between the TTC estimates at 
the lower compared to the higher loudness level, dz = 2.06). It was still 
significant and relatively large in terms of statistical effect size (dz =

0.97) even when full visual information about the approaching vehicle 
was available. From the viewpoint of fundamental research, the results 
of the present study thus confirm that audiovisual TTC estimates are to a 
significant extent based on the loudness of the approaching object 
(DeLucia, et al., 2016; Keshavarz, et al., 2017), which is a heuristic cue 
because the loudness of a sound source does not directly specify its TTC. 
From a practical perspective, our results indicate that in real traffic 
scenarios, quieter vehicles might lead to longer TTC estimates, and thus 
potentially to riskier road crossing decisions compared to louder 
vehicles. 

The role of loudness as a heuristic cue used for TTC estimation is 
particularly relevant in the context of increasing electric mobility. EVs 
are more silent than ICEVs, particularly at lower speeds (see Fig. 3). This 
results in impaired auditory detectability of EVs compared to ICEVs (e. 
g., Altinsoy, 2013; Grosse et al., 2013). To ensure road safety, legislative 
actions were therefore necessary to improve the auditory detectability of 
EVs by implementing acoustic vehicle alerting systems (AVAS), which 
emit artificial sounds at lower speeds. Nonetheless, the strong effect of 
vehicle loudness on the TTC estimates found in the present study shows 
that the effect of vehicle loudness is not restricted to detectability but 
also affects the perception of a vehicle’s motion in a suprathreshold 
situation where the vehicle is clearly audible and has already been 
detected. This finding emphasizes the need to investigate and potentially 
adapt the design of AVAS technology not only with regard to detect-
ability, but also regarding vehicle motion perception (see Wessels at al., 
under revision). In this context, it is noteworthy that there was no 
substantial difference between the TTC estimates for EVs and ICEVs 
when presented at the same loudness, which underlines the central role 
of loudness for TTC estimation. In other words, the effect of loudness on 
the TTC estimates did not interact with the different spectral charac-
teristics of the two vehicle types. Thus, if an AVAS puts the loudness of 
an EV in the same range as the loudness of an ICEV, and not only at lower 
speeds, we would no longer expect a systematic difference between TTC 
estimates for the two vehicle types. 

The role of loudness for TTC estimation is further emphasized by a 
consistent effect of loudness on the TTC estimates at all constant ve-
locities. The effect of loudness on TTC estimates was stronger at the 
faster speeds compared to the lowest speed of 10 km/h. This finding is 
somewhat surprising because the difference in loudness caused by the 
10 dB sound level difference between the two loudness levels can be 
assumed to be similar for the – on average – quieter vehicle sounds at 10 
km/h compared to the – on average – louder vehicle sounds at the higher 
speeds. At all speeds, the sound levels were well above the detection 
threshold, and thus in a region where log loudness is a linear function of 
the sound level (e.g., Jesteadt & Leibold, 2011), so that an increase in 
sound level by 10 dB should have resulted in an increase in loudness by 
approximately a factor of 2 at all speeds. Therefore, additional research 
is required to identify the origin of this effect. For instance, pedestrians 
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might rely on different acoustic cues when the vehicle travels at a low 
speed compared to when it travels at higher speeds. 

In addition to the insights into the intensity-arrival effect and po-
tential effects of vehicle type, the present experiment provides impor-
tant fundamental information about TTC estimation based on auditory 
cues, because the degree of realism of the presented auditory stimuli was 
higher than in previous experiments on auditory TTC estimation. 
Although participants’ TTC estimates increased when the presented TTC 
increased in the A-only condition (left panel in Fig. 4), an increase of the 
presented TTC by 3.0 s resulted in a change in the mean estimated TTC 
of <1.5 s. Thus, the auditory TTC estimates showed a pronounced 
“regression-to-the-mean” pattern, which is compatible with previous 
results (DeLucia, et al., 2016; Keshavarz, et al., 2017; Schiff & Oldak, 
1990). Thus, the availability of a full set of physically plausible auditory 
TTC cues in the present experiment did not remove this effect. In fact, a 
regression-to-the-mean pattern has also been observed in many studies 
on visual TTC estimation (e.g., Hecht, Brendel, Wessels, & Bernhard, 
2021; Heuer, 1993; McLeod & Ross, 1983; Oberfeld & Hecht, 2008), 
where it was particularly prominent when the fidelity of the presented 
stimuli was limited, as for example when viewing the approaching ob-
jects through an aperture (DeLucia & Liddell, 1998). In contrast, in the 
AV condition of the present experiment, where both auditory and visual 
information was presented with high fidelity, the TTC estimates showed 
only a weak regression-to-the-mean pattern (right panel in Fig. 4). Thus, 
the additional visual information promoted the accuracy of the TTC 
estimates in comparison to the A-only condition. 

Another difference between auditory-only and audiovisual TTC es-
timates concerned the effect of velocity. In the AV condition, the esti-
mated TTC increased monotonically with increasing velocity, which is 
compatible with a size-arrival effect (DeLucia, 1991) or a distance bias 
(Law et al., 1993). In contrast, in the A-only condition, the mean TTC 
estimates depended on the velocity in a non-monotonic way. It remains 
to be investigated whether this difference in the effect of velocity is 
related to the reduced distance information available in the A-only 
compared to the AV condition. In the A-only condition, the distance in 
the simulated traffic scenario can be assumed to have been signaled 
mainly by acoustic intensity (Kolarik, Moore, Zahorik, Cirstea, & Pard-
han, 2016) and probably to a lesser extent by motion parallax (Genzel, 
Schutte, Brimijoin, MacNeilage, & Wiegrebe, 2018), while in the AV 
condition a full set of monocular and binocular visual distance cues was 
additionally available. 

Several questions remain open due to limitations of our study and 
should be addressed in future research. First, it is unclear whether the 
reduced accuracy of TTC estimates in the A-only condition was mainly 
due to the fact that all participants possessed normal vision and can thus 
be assumed to use predominantly visual information in TTC judgments 
in everyday life, like when crossing a road. In a study by Schiff and 
Oldak (1990), congenitally blind or early-onset blind adults showed a 
much reduced regression-to-the-mean pattern in auditory-only TTC 
judgments for approaching vehicles compared to participants with 
normal vision. This finding is particularly striking since the auditory 
recordings presented in the study by Schiff and Oldak were of rather 
reduced quality (presentation of monophonic vehicle recordings on a 
single loudspeaker). We would expect early-onset blind persons to be 
able to estimate TTC even more precisely with more high-fidelity 
auditory simulations as used in our study. Additionally, it would be 
interesting to investigate whether extensive training of normally sighted 
people in auditory-only TTC estimation could improve the use of audi-
tory cues and, thus, render the pattern of estimates similar to those of the 
visual-only or audiovisual TTC estimates. 

Second, our results demonstrated that visual in addition to auditory 
information reduced the regression-to-the-mean pattern in participants 
with normal vision and hearing. Put differently, with additional visual 
information about the approaching vehicle, participants were able to 
judge its TTC considerably more accurately. However, we did not 
include a visual-only condition in the present experiment, in order to 

maintain a reasonable experimentation time. For this reason, the data do 
not provide detailed information about a potential benefit when audi-
tory cues are available in addition to visual cues. Put differently, it re-
mains to be investigated how auditory and visual cues are weighted 
relatively to each other when highly realistic audiovisual simulations as 
in the study at hand are presented rather than rather simplistic simu-
lations as in our two previous studies (DeLucia, et al., 2016; Keshavarz, 
et al., 2017). In any case, the significant intensity-arrival effect observed 
in the AV condition clearly shows that our participants factored auditory 
cues into their TTC estimates even when full visual information was 
available. 

Third, in terms of the acoustical simulations, it would be interesting 
to compare the sound quality of our simulation approach as well as the 
TTC estimation results to other simulation approaches, for example to 
pass-by auralizations that use source signals based on an inversion 
process of pass-by recordings that undo the effects of Doppler frequency 
shifts, spherical spreading, air-attenuation, etc. (Forssén, Hoffmann, & 
Kropp, 2018; Hoffmann & Kropp, 2019). Improvements of our simula-
tions could potentially be achieved by using close-proximity recordings 
of the tire-road noise (Pereira, Soares, Silva, Sousa, & Freitas, 2021), and 
by modeling the directivity of the vehicle noise sources, which are at 
present implemented as point sources, similar to other auralization ap-
proaches (Pereira, et al., 2021). 

Fourth, the road-tire noise can vary considerably across different tire 
types and road surfaces. The two recorded vehicles (ICEV and EV) were 
equipped with different tires (see Methods), which might have resulted 
in differences between the level of tire-road noise for the two vehicles. 
However, the important feature of the present experiment is that the two 
vehicles were presented at equal loudness, which was achieved by the 
individual loudness matches that were obtained before the TTC- 
estimation task started. For this reason, differences in the road-tire 
noise level in the original recordings of the ICEV and the EV played no 
role in the TTC-estimation task. Still, potential differences in tire-road 
noise due to the different types of tires may have contributed to the 
loudness difference between the two vehicles in the original recordings 
(see Fig. 2). Potentially, the different tires might have caused not only a 
different tire-sound level but also a different tire-road-noise frequency 
spectrum, which would then have increased the spectral difference be-
tween the two vehicle types. Before this background, it is even more 
interesting that the vehicle type had no substantial effect on the TTC 
estimations, indicating that when the two vehicles were presented at 
equal loudness, spectral differences did not play an important role, as we 
discussed earlier. Other road surfaces like cobblestones would also 
create a different situation, as the tire-road noise would be more 
dominant than the powertrain noise (Soares et al., 2017), and could also 
provide stronger speed cues than on a smooth asphalt surface. A higher 
level of tire-road noise would reduce the sound level difference between 
ICEVs and EVs (Fig. 3). Again, this does not affect the results of the 
present TTC experiment, because the two vehicle types were loudness- 
matched. 

5. Conclusions 

The results of the present study confirm the central role of vehicle 
loudness for TTC judgments in traffic scenarios. Using a novel simula-
tion system that provides auditory and audiovisual simulations of 
approaching electric and conventional vehicles with a higher degree of 
realism than in previous studies, the data confirmed a) that humans are 
capable of estimating TTC based only on auditory cues (albeit with 
somewhat lower accuracy compared to audiovisual estimation), b) that 
the loudness of the approaching sound source has a strong effect on TTC 
estimates based on only auditory information but also when full visual 
information is available, and c) that vehicle loudness should therefore be 
considered as an important factor in traffic safety. 
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Fußgänger in verschiedenen Verkehrssituationen und unterschiedlichen 
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