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Abstract Repeated measures analyses of variance are the
method of choice in many studies from experimental psychol-
ogy and the neurosciences. Data from these fields are often
characterized by small sample sizes, high numbers of factor
levels of the within-subjects factor(s), and nonnormally distrib-
uted response variables such as response times. For a design
with a single within-subjects factor, we investigated Type I error
control in univariate tests with corrected degrees of freedom,
the multivariate approach, and a mixed-model (multilevel)
approach (SAS PROC MIXED) with Kenward–Roger’s
adjusted degrees of freedom.We simulated multivariate normal
and nonnormal distributions with varied population variance–
covariance structures (spherical and nonspherical), sample sizes
(N), and numbers of factor levels (K). For normally distributed
data, as expected, the univariate approach with Huynh–Feldt
correction controlled the Type I error rate with only very few
exceptions, even if samples sizes as low as threewere combined
with high numbers of factor levels. The multivariate approach
also controlled the Type I error rate, but it requires N ≥ K.
PROC MIXED often showed acceptable control of the Type I
error rate for normal data, but it also produced several liberal or
conservative results. For nonnormal data, all of the procedures
showed clear deviations from the nominal Type I error rate in
many conditions, even for sample sizes greater than 50. Thus,
none of these approaches can be considered robust if the re-
sponse variable is nonnormally distributed. The results indicate
that both the variance heterogeneity and covariance heteroge-
neity of the population covariance matrices affect the error rates.
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Repeated measures designs in which each experimental unit
(e.g., subject) is tested in more than one experimental con-
dition are very common in psychology, the neurosciences,
medicine, the social sciences, and agricultural research. The
data from such experiments are often analyzed with analyses
of variance (ANOVAs). The statistical assumptions that
must be met in order for repeated measures ANOVAs to
be valid are stronger than for data from a completely ran-
domized design (also termed an independent-groups design)
in which each experimental unit is tested only under one
single experimental condition. For example, when testing
for main effects and interactions with more than one numer-
ator degree of freedom, the variance–covariance structure of
the data is important for the validity of the tests (cf. Huynh
& Feldt, 1970; Keselman, Algina, & Kowalchuk, 2001;
Rouanet & Lépine, 1970). The extents to which several
different approaches for the analysis of repeated measures
data are robust, in the sense that they control the Type I error
rate (i.e., the probability that the null hypothesis will be rejected,
given that it is true), have been studied extensively for certain
repeated measures designs (for reviews, see Keselman et al.,
2001; Keselman, Algina, & Kowalchuk, 2002).

The aim of the present study was to investigate the control
of the Type I error rate exhibited by different types of repeated
measures ANOVAs in situations characterized by very small
sample sizes (N as low as three) and nonnormality. Such data
are frequently encountered in controlled experiments in the
fields of experimental psychology, the neurosciences, and in
certain clinical studies. However, the robustness of the differ-
ent procedures for the analysis of this specific type of repeated
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measures data has not yet been investigated very systemati-
cally. We illustrate three characteristics of the data type exam-
ined in our study with example studies from the relevant fields
that have each been cited between 300 and 2,000 times,
according to the Science Citation Index (http://isiknowledge.
com/), and can thus be considered as relevant and accepted
contributions to the respective fields of research. The three
characteristics are (a) small or very small sample sizes (typi-
cally, N 0 3 to 30), (b) nonnormally distributed dependent
measures, and (c) the use of a completely within-subjects
design (i.e., there are no between-subjects factors).

Characteristic (a) can be attributed to economic consid-
erations. In many experiments—for example, in visual psy-
chophysics or psychoacoustics—the experimentation time
required for each subject is high. In these fields, typically
large numbers of trials are collected per subject and exper-
imental condition, because experimenters wish to minimize
the effect of, for instance, day-to-day fluctuations on detec-
tion thresholds, or because they want to compute measures
of sensitivity, such as d´ from signal detection theory (cf.
Green & Swets, 1966), that require several hundreds of
trials. Additionally, researchers are often interested in the
best possible performance that subjects can attain, in order
to explore the limits of the sensory and cognitive systems.
Therefore, highly trained subjects are required, and training
periods of up to 5 h are not unusual (e.g., Duncan &
Humphreys, 1989). As a consequence, to keep experimen-
tation time at a manageable level, small numbers of subjects
are tested (N 0 2 to 10; e.g., Duncan & Humphreys, 1989;
Eriksen & Eriksen, 1974; Ernst & Banks, 2002). If physio-
logical responses are collected, there are additional reasons
to restrict the number of subjects tested. For example, in
electroencephalography (EEG) experiments, which nowa-
days often use up to 128 electrodes, the attachment of the
electrodes is time consuming and also poses a certain risk of
infection to the subjects, so that often small samples are used
(N 0 5 to 20; e.g., Sams, Paavilainen, Alho, & Näätänen,
1985). In neuroimaging studies using fMRI, operating
the MRI scanner is expensive, not least because quali-
fied medical and technical personnel are required.
Additionally, the time available for research use is
often very limited in clinics, due to the priority of
medical use. Beyond that, the data analysis for a high
number of subjects would be time consuming, because the
fMRI data have to be mapped to anatomical structures on an
individual basis (cf. Brett, Johnsrude, & Owen, 2002).
Therefore, small sample sizes are again common (N 0 10 to
20; e.g., Kanwisher, McDermott, & Chun, 1997). Other fac-
tors imposing limitations on the sample size are limited access
to rare populations—such as, for example, persons with spe-
cial types of synesthesia or patients with specific neurological
disorders—or the ethical policy of minimizing the use of
animals for research.

Concerning the distributional form of the response
variables [characteristic (b)], it should be noted that not
only in the research fields discussed here, but also in
many other areas in psychology, strong deviations from
normality are frequently encountered (Micceri, 1989). In
psychophysics and cognitive neuroscience, two very im-
portant response measures are nonnormally distributed.
Response times show a skewed and heavy-tailed distribu-
tion that is often successfully modeled as an ex-Gaussian
distribution, which is a convolution of the Gaussian and
exponential distributions (Luce, 1986; Van Zandt, 2000).
In first approximation, response times follow a (shifted)
log-normal distribution (Heathcote, Brown, & Cousineau,
2004; Ulrich & Miller, 1994). Proportions like error rates
or the proportion of correct responses are binomially
distributed. Other important measures, such as detection
thresholds, d´ values, or amplitudes of evoked EEG
responses, however, can be considered to be normally
distributed.

Finally, the use of designs containing only within-
subjects factors [characteristic (c)] is due to the fact that,
for example, in basic research on vision or audition, inter-
individual differences are often considered less important
because the aim is to understand the basic functioning of
these sensory systems. Therefore, designs containing only
within-subjects factors (i.e., each subject is tested under all
experimental conditions) are advantageous because they
provide comparably high power even with small sample
sizes.

To investigate the robustness of repeated measures anal-
yses for data showing the three characteristics discussed
above, we simulated a design with a single within-subjects
factor, no between-subjects factors, small sample sizes, and
both normally and nonnormally distributed response varia-
bles. Due to the substantial computation time required for
our simulations, we focused on Type I error rates (i.e.,
probability of false positives) and did not obtain Type II
error rates (i.e., power; Algina & Keselman, 1997, 1998;
Potvin & Schutz, 2000). In fundamental research, often
more emphasis is placed on avoiding Type I errors than on
avoiding Type II errors. Therefore, our data provide a basis
for identifying procedures that control the Type I error rate
in the specific situations that we studied. Additional simu-
lation studies will be required to compare the procedures
that we identified as suitable in terms of the Type I error rate
with respect to statistical power (Type II error rate).
Following many previous studies on the empirical Type I
error rate for repeated measures designs, we adopted the
“liberal” criterion of robustness proposed by Bradley
(1978), according to which a procedure can be considered
robust if the empirical Type I error rate ba is contained within
the interval 0:5a � ba � 1:5a, where α is the nominal Type I
error rate (i.e., level of significance).
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Analysis approaches

Before explaining the design of our study, we will briefly
introduce three different approaches that are widely used for
the analysis of repeated measures data,1 and that we there-
fore included in our study. A detailed description of these
procedures can be found in Keselman et al. (2001).

Univariate approach with df correction

In the one-factorial, completely within-subjects design that we
simulated, each subject (i 0 1 . . . N) is measured once under all
levels (k 0 1 . . .K) of the within-subjects factor, and there are no
between-subjects (grouping) factors. In the univariate ap-
proach, the F-distributed test statistic is the ratio between the
mean square for the within-subjects factor W and the mean
square for theW × Subject interaction. This test statistic depends
on the assumptions of normality, independence of subjects, and
sphericity of the population variance–covariance matrix (Huynh
& Feldt, 1970; Rouanet & Lépine, 1970). Sphericity means that
all orthonormalized contrasts (e.g., K − 1 treatment differences)
have the same population variance (Huynh & Feldt, 1970;
Rouanet & Lépine, 1970). If the assumption of spheric-
ity is violated, the F test will result in too many Type I
errors. Box (1954) showed that in this case, the test
statistic is approximately distributed as F[α; ε(K − 1);
ε(N − 1)(K − 1)], where the population parameter ε
quantifying the deviation from sphericity is in the inter-
val [1/(K − 1), 1.0] (Geisser & Greenhouse, 1958) and
ε 0 1.0 for a spherical population variance–covariance
matrix (Huynh & Feldt, 1970).

Two popular sample estimates of ε have been proposed
by Greenhouse and Geisser (1959) and Huynh and Feldt
(1976). Both variants were included in our study, and will be
denoted by GG and HF in the following. Other variants of
df-adjusted univariate tests are discussed by Quintana and
Maxwell (1994) and Hearne, Clark, and Hatch (1983).

Multivariate approach

The multivariate test of the effect of the within-subjects
factor is performed by first creating K − 1 difference varia-
bles between pairs of factor levels, or more generally, K − 1
orthonormalized contrasts (for an excellent introduction, see
Maxwell & Delaney, 2004). Next, Hotelling’s (1931) mul-
tivariate T2 statistic is used for testing the hypothesis that the
vector of population means of these K − 1 difference vari-
ables equals the null vector. Unlike the univariate test, the

multivariate test (denoted by T2 in the following) does not
require sphericity, but only that the covariance matrix be
positive definite. However, like the univariate approach, it is
of course based on the assumptions of normality and the
independence of observations across subjects. An important
aspect is that the multivariate test requires N ≥ K, which
prevents its use if a small sample size is combined with a
high number of factor levels, as was the case in most of the
example studies cited above.

Mixed-model analysis

A third approach for testing the repeated measures main effect
has gained importance during the last decade, partly due to the
increasing availability of powerful computer hard- and soft-
ware. This so-called mixed-model analysis2 is often also re-
ferred to as multilevel models (especially in educational
psychology and the social sciences), hierarchical linear mod-
els, or random coefficient models (especially if used with
continuous covariates—that is, in multiple regression prob-
lems) (cf. Maxwell & Delaney, 2004, p. 763).

The mixed-model analysis is based on a linear model in-
cluding both fixed and random effects. The random effects and
the errors are assumed to be normally distributed. In contrast to
the univariate and multivariate approaches, the variance–co-
variance structure of the response measure is modeled explic-
itly (Littell, Pendergast, & Natarajan, 2000); it depends on the
variance–covariance structures of both the random effects and
the errors. In fact, the univariate approach and the multivariate
approach described above can be viewed as special cases of the
mixed-model analysis. The PROC MIXED procedure from
SAS 9.2 that we used for the simulations allows for fitting a
wide variety of covariance structures (Wolfinger, 1996),
among them are the spherical compound symmetry (CS) and
the unstructured (UN) types (see Table 1).

Unlike the univariate and multivariate approaches, which
use least-squares procedures, a maximum-likelihood or re-
stricted maximum-likelihood approach (cf. Jennrich &
Schluchter, 1986; Littell, Milliken, Stroup, Wolfinger, &
Schabenberger, 2006) is used for parameter estimation for
the mixed model, with the potential consequence of numer-
ical problems.

Note that the (restricted) maximum-likelihood-based
PROC MIXED analysis can be used even if there are miss-
ing values (cf. Padilla & Algina, 2004)—more precisely, if
the missing data mechanism is missing completely at ran-
dom (MCAR) or missing at random (MAR) (Rubin, 1976).
Missing values usually play no role for well-controlled

1 Several other available procedures are targeted at analyzing the data
from unbalanced designs (cf. Keselman et al., 2001; Vallejo & Livacic-
Rojas, 2005; Vallejo Seco, Izquierdo, Garcia, & Diez, 2006). As we
studied a completely within-subjects design without grouping factors,
we did not include these procedures.

2 Note that early texts referred to the univariate approach as a “mixed
model,” because it contains a fixed effect of the within-subjects factor
and a random effect of the subject (e.g., Geisser & Greenhouse, 1958).
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laboratory experiments, so we did not consider this issue in
our study.

Previous simulation studies

Not many simulation studies measuring Type I error rates
exist for completely within-subjects designs with nonnormal
data and/or very small sample sizes. It has been suggested,
however, that simulation results for designs with a combi-
nation of within- and between-subjects factors, identical
group sizes (i.e., balanced designs), and equal covariance
matrices across groups should be similar to what can be
expected for a completely within-subjects design (e.g.,
Keselman et al., 2001, p. 11; Keselman, Kowalchuk, &
Boik, 2000, p. 55). For “split-plot” designs containing both
between- and within-subjects factors, many simulation stud-
ies are available (for reviews, see Keselman et al., 2001,
2002), due to the importance of this type of design for
educational and clinical psychology and for the social sci-
ences. Still, even if studies containing between-subjects
factors are considered, it has to be stated that Type I error
rates have not yet been obtained very systematically for
extremely small sample sizes and nonnormal data. We will
first discuss studies simulating small samples and nonnor-
mal data, and then consider studies in which small sample
sizes were simulated but the data were normally distributed.

For N 0 6 or 9 and a design with equal group sizes and
equal covariance matrices across groups, Keselman et al.
(2000) reported frequent liberal error rates if the data were
χ2(3) distributed. The multivariate approach showed a
stronger tendency toward liberal error rates than did a uni-
variate approach with df correction. For normally distributed
data, both approaches controlled the Type I error rate
(Huynh & Feldt, 1976; Lecoutre, 1991).

Berkovits, Hancock, and Nevitt (2000) simulated a design
with a single within-subjects factor (K 0 4), no between-
subjects factors, and varied the sample size between 10 and
60. For normal data andN 0 10, HF, GG, and T2 controlled the
Type I error rate. With increasing skewness and kurtosis of the
simulated response variable, the three procedures produced
conservative Type I error rates for a spherical population
covariance matrix and showed liberal behavior at small values
of ε. For strong deviations from normality (skewness 0 3.0,
kurtosis 0 21.0), the results were robust only at the highest
sample size (N 0 60).

Wilcox, Keselman, Muska, and Cribbie (2000) reported
both conservative and liberal Type I error rates in a design
with one within-subjects factor (K 0 4, N 0 21) if the
distribution of the dependent variable was nonnormal. For
strongly heavy-tailed distributions (g-and-h distribution
with h 0 0.5; cf. Headrick, Kowalchuk, & Sheng, 2010),
the univariate approach with Huynh–Feldt df correction
often produced conservative Type I error rates, especially
if the variances under the four factor levels were equal. If the
variances were unequal, the multivariate approach produced
conservative results for symmetric and heavy-tailed distri-
butions, but highly liberal results for asymmetric and heavy-
tailed distributions. In the latter case, HF also occasionally
produced liberal Type I error rates.

Muller, Edwards, Simpson, and Taylor (2007) simulated
normal data from a design without between-subjects factors
(K 0 9), studied sample sizes between 10 and 40, and varied
the sphericity parameter ε of the population covariance ma-
trix. At an α level of .04, GG and HF always met Bradley’s
liberal criterion. PROC MIXED fitting a UN or CS type of
covariance matrix and using the Kenward–Roger (1997) ad-
justment produced liberal Type I error rates if N 0 10 and ε <
1.0. At N 0 20, PROC MIXED produced robust results if a
UN rather than a CS type of covariance matrix was fitted.

Table 1 Population covariance structures used for data simulation

Compound symmetric (CS) (2 parameters)

σ2

1 ρ ρ ρ
1 ρ ρ

1 ρ
1

2
664

3
775

Random coefficients (RC) (4 parameters)

1 0
1 1
1 2
..
. ..

.

1 K � 1

2
66664

3
77775 σ11 σ12

σ12 σ22

� � 1 0
1 1
1 2
..
. ..

.

1 K � 1

2
66664

3
77775þ

σ2

σ2

. .
.

σ2

2
664

3
775

Unstructured (UN) (K K þ 1½ � 2= parameters)

σ2
11 σ12 σ13 � � � σ1K

σ2
22 σ23 � � � σ2K

σ2
33 � � � σ3K

. .
. ..

.

σ2
KK

2
666664

3
777775

Heterogeneous first-order autoregressive [ARH(1)] (K + 1 parameters)

σ2
1 σ1σ2ρ σ1σ3ρ3 � � � σ1σKρK�1

σ2
2 σ2σ3ρ � � � σ2σKρK�2

σ2
3 � � � σ3σKρK�3

. .
. ..

.

σ2K

2
666664

3
777775

Only the upper diagonal of the symmetric matrices is shown. The CS structure is displayed for four factor levels (K 0 4). For higher K, the K × K
correlation matrix again has 1 on the main diagonal and ρ elsewhere.
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Skene and Kenward (2010a) simulated a design with two
groups, five subjects per group (i.e., N 0 10), and a contin-
uous within-subjects covariate with five levels (K 0 5). The
response variable was normally distributed. PROC MIXED
fitting an unstructured covariance matrix and using the
Kenward and Roger (1997) adjustment controlled the Type
I error rate.

Gomez, Schaalje, and Fellingham (2005) simulated normal
data, with one continuous within-subjects factor (three to five
levels), one between-subjects factor with three levels, and total
sample sizes between nine and 15. For a balanced design with
identical covariance matrices across groups, PROC MIXED
with the Kenward–Roger adjustment controlled the Type I
error rate if the correct covariance structure was fitted, except
for a single type of population covariance structure. If the
covariance structure was selected via the Akaike (AIC;
Akaike, 1974) or Bayesian (BIC; Schwarz, 1978) information
criteria, several liberal error rates were reported.

Taken together, for samples sizes as low as N 0 6, the
univariate approaches with df correction and the multivari-
ate approach seem to control Type I error rates for normal
data, which is the expected result. With some exceptions,
this is also true for PROC MIXED with the Kenward–Roger
adjustment. However, this pattern seems to change, some-
times even dramatically, if the distribution of the response
variable is nonnormal.

To summarize the previous results, for repeated measures
designs, no empirical Type I error rates have been reported
for N < 6, the influence of sample size has only been
investigated in most studies by comparing two or three
different sample sizes, and the effects of nonnormality have
also not been tested for very small sample sizes combined
with higher numbers of levels of the within-subjects factor.
Thus, our study for the first time provides empirical Type I
error rates for (1) samples sizes as small as three and varied
in small steps, (2) normal and nonnormal data, (3) numbers
of factor levels ranging from four to 16, and (4) a rather
wide variety of population covariance matrices.

Method

Simulated experimental design

We simulated a completely within-subjects design, in which
each subject (i 0 1 . . . N) was measured once under all levels
(k 0 1 . . . K) of the within-subjects factor (i.e., each experi-
mental condition). There were no between-subjects (grouping)
factors. An example of such a design would be a Stroop color-
word task (cf. MacLeod, 1991) in which, for each subject,
response times are measured for incongruent, congruent, and
neutral trials (i.e., K 0 3). As we were interested in empirical
Type I error rates, we simulated data sets corresponding to the

null hypothesis of equal means—that is,

H0 : μ1 ¼ μ2 ¼ . . . ¼ μk ; ð1Þ
where μk is the population mean in condition k.

Characteristics of the simulated data sets

The simulated data sets varied in (a) the population distri-
bution, (b) the population covariance structure, (c) the num-
ber of levels of the within-subjects factor, and (d) the sample
size (i.e., the number of simulated subjects). These variables
were factorially combined, and each resulting scenario was
simulated 5,000 times. It should be noted that PROC
MIXED requires substantial computation time, especially
at large values of K and N when many parameters have to
be estimated.

Population distributions The following distributional forms
of the simulated response variable were chosen for this
study: (1) a normal distribution with μ 0 0 and σ 0 1, (2)
a log-normal distribution3 with μ 0 0 and σ 0 1, and (3) a
chi-squared distribution with two degrees of freedom.

The selected log-normal distribution had skewness and
kurtosis values of 6.18 and 113.94, respectively. Skewness
is a measure of asymmetry, and a distribution with positive
kurtosis has a heavier tail and a higher peak than the normal
distribution (see DeCarlo, 1997). Thus, the simulated log-
normal distribution exhibited a degree of asymmetry and
heavy-tailedness that, according to previous studies, might
negatively affect the performance of the analysis procedures
(Sawilowsky & Blair, 1992; Wilcox et al., 2000). Most
previous simulation studies had used a log-normal distribu-
tion with μ 0 0 and σ 0 0.5 (e.g., Algina & Oshima, 1994),
which has smaller values of skewness and kurtosis (1.75 and
8.89, respectively).4 We selected a distribution showing a
rather extreme deviation from normality in order to test the
robustness of the data analysis approaches in such cases.
Note that skewed distributions are frequently encountered in
psychological studies (Micceri, 1989; Wilcox, 2005), al-
though it is unclear which values of, for instance, skewness
are representative for a particular field of research (Keselman,
Kowalchuk, Algina, Lix, & Wilcox, 2000; Wilcox, 2005). As
we discussed above, the log-normal distribution can be con-
sidered a first approximation to the distribution of response
times (cf. Heathcote et al., 2004), which is a dependent mea-
sure very frequently used in cognitive psychology. Recently,

3 The probability density function for the log-normal distribution is

PðxÞ ¼ 1
σ
ffiffiffiffi
2p

p
x
e� ln x�μð Þ2 2σ2ð Þ=

4 Several articles have erroneously claimed that a log-normal distribu-
tion with μ 0 0 and σ 0 0.5 has a kurtosis of 5.90 rather than 8.89. This
error can be traced back to Keselman, Algina, Kowalchuk, andWolfinger
(1999b, p. 71).
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Palmer, Horowitz, Torralba, and Wolfe (2011) reported em-
pirical values of skewness and kurtosis for response time
distributions from a visual search experiment. They found
skewness values greater than 4.0 and kurtosis values greater
than 40.0 in some conditions, which again justifies our deci-
sion to include a log-normal distribution with rather high
values of skewness and kurtosis.

Theχ2(2) distribution exhibits extreme asymmetry (Micceri,
1989), because its mode coincides with the minimum.
Although the values of skewness 0 2 and kurtosis 0 6 are
moderate, the χ2(2) distribution is not only asymmetric but
has a monotonically decreasing probability density function
(PDF). Note that a χ2(2) distribution multiplied by a constant,
as is included in the covariance matrices with unequal varian-
ces, is strictly speaking no longer a χ2(2) distribution, although
in the literature it is usual to ignore this issue and to refer only
to the base distribution used when generating the random
variates (e.g., Keselman, Carriere, & Lix, 1993). Incidentally,
a binomial distribution with success rate p 0 .05—as would,
for example, occur for error rates in many experiments in
cognitive psychology—also shows a strictly decreasing PDF
if each proportion is based on fewer than 20 trials, as in, for
example, the study by Meiran (1996) cited above.

Population covariance structures As we discussed in the
introduction, an important concern for repeated measures
ANOVAs is the sphericity (or, rather, lack of sphericity) of
the population covariance matrix (e.g., Huynh & Feldt,
1970; Rouanet & Lépine, 1970). For example, the univariate
ANOVA approach assumes sphericity (Huynh & Feldt,
1976), and the correction factors for the degrees of freedom
(e.g., Greenhouse & Geisser, 1959; Huynh & Feldt, 1976)
attempt to correct for deviations from a spherical pattern, as
quantified via Box’s ε (Box, 1954), which is a population
parameter. For this reason, we included a compound sym-
metric (CS) population covariance structure (see Table 1),
which is spherical (i.e., ε 0 1.0). In addition, three popula-
tion covariance structures with ε 0 .5 were studied, thus
showing a strong deviation from sphericity. As is shown in
Table 1, these structures were of the unstructured (UN),
random-coefficients (RC), and heterogeneous first-order
autoregressive [ARH(1)] types (cf. Wolfinger, 1996). The
reason to include different types of covariance structures
with ε 0 .5 was to evaluate the performance of PROC
MIXED with different fitted covariance structures. Beyond
that, we were interested in whether the Type I error rates of
the other ANOVA procedures would depend on the specific
covariance structure for equal values of ε.

For K 0 4 and ε 0 .75, covariance matrices of types UN,
RC, and ARH(1) were specified by Keselman, Algina,
Kowalchuk, and Wolfinger (1999a). These matrices were
subsequently used in a substantial number of simulation
studies. To construct covariance matrices for a higher

number of factor levels and with ε 0 .5, we created covari-
ance matrices with the appropriate structures, using random-
ly selected values for the parameters. For each pairing of
covariance structure and number of factor levels, we then
selected a covariance matrix with ε close to the desired
value of .50 (squared deviation ≤ 10–4). For the power-
transform method (Headrick, 2002) that we used to generate
multivariate nonnormally distributed data (see the Data
Generation section), positive definite covariance matrices
are required because the method involves a Cholesky de-
composition (Commandant Benoit, 1924). Additionally, the
intermediate covariance matrices used by the power-
transform method (see the Data Generation section) are also
required to be positive definite. We selected covariance
matrices to meet these criteria.

As can be seen in Table 1, the RC covariance structure
needs four parameters: σ, σ11, σ22, and σ12. This is true for
all numbers of factor levels. The common standard devia-
tion σ was randomly selected from an interval from 0.1 to 4.
The parameters σ11, σ22, and σ12 were sampled uniformly
from an interval from −0.9 to 0.9.

The ARH(1) covariance structure has only one correlation
parameter (ρ) and a variance parameter for every factor level
(σi

2). Therefore, the ARH(1) covariance structure needs K + 1
parameters. The standard deviations σi were first uniformly
sampled from an interval from 1.0 to 4.0, and then the corre-
lation parameter ρ was selected to produce the desired ε 0 .5.

The UN covariance structure has K K þ 1ð Þ 2= parameters.
While K of these parameters represent the variances of the K
variables, the remaining parameters represent the covariances.
The standard deviations σiiwere first sampled uniformly from
an interval from 0.5 to 6. Then the covariances σij were
sampled uniformly from the interval [0.30σiσj, 0.97σiσj].

The CS covariance structure needs only two parameters,
independent of the number of factor levels. This covariance
structure is distinct from the other three, because by design
the Box epsilon is ε 0 1.0 for all CS covariance matrices
(i.e., the matrix is spherical) and because all variances are
equal. We used the parameter values σ2 0 20.0 and ρ 0 .8.

Supplement B (available online with this article) shows
the covariance matrices used for data generation. Note that
the nonspherical matrices also exhibited heterogeneous var-
iances for the K variables.

Numbers of levels of the within-subjects factor For the
number of levels of the within-subjects factor (K), the fol-
lowing values were chosen: 4, 8, and 16. While a value of K
0 16 might seem high, experiments using, for example, a
large number of presentation levels (e.g., Florentine, Buus,
& Poulsen, 1996) are not unusual in psychophysics.
Additionally, a test with 16 − 1 0 15 numerator degrees of
freedom would arise when testing for the interaction be-
tween two within-subjects factors that have four and six
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factor levels, respectively. The number of factor levels has
been demonstrated to affect the Type I error rate and the power
of repeated measures ANOVAs (e.g., Algina & Keselman,
1997; Keselman, Keselman, & Lix, 1995). Additionally, some
of the analysis procedures cannot be applied if a high number
of factor levels is combined with a small sample size. For
example, the multivariate approach requires that the number
of subjects N be equal to or greater than the number of factor
levels of the within-subjects factor (N ≥ K).

Sample sizes As we were especially interested in the per-
formance of the procedures for extremely small sample
sizes, we varied the sample size in steps of one between
N 0 3 and 10, and we also studied nine larger sample sizes
(N 0 16, 17, 18, 19, 20, 30, 50, 70, and 100). The small steps
between 16 and 20 were included because pilot simulations
indicated that PROC MIXED needs slightly more subjects
than the number of factor levels for convergence when
fitting a UN covariance structure.

Data analysis approaches

The empirical Type I error rates were analyzed for four dif-
ferent repeated measures ANOVA procedures. These were (1)
the univariate approach with Greenhouse–Geisser correction
for the degrees of freedom (GG), (2) the univariate approach
with Huynh–Feldt df correction (HF), (3) the multivariate
approach (T2), and (4) the mixed-model approach as comput-
ed by SAS PROC MIXED (see Keselman et al., 2001, for a
description of the different approaches). Note that for the
univariate approaches, the df correction was unconditionally
applied (Keselman, Rogan,Mendoza, &Breen, 1980), instead
of first conducting a test for lack of sphericity (Mauchly,
1940). The primary reason for this was that the Mauchly test
requires N ≥ K(K − 1)/2, which rendered it useless for a
considerable proportion of our simulated designs. Beyond
that, theMauchly test is sensitive to departures from normality
(Huynh & Mandeville, 1979).

The analyses in PROC MIXED were conducted using the
Kenward–Roger (1997)5 adjustment (option ddfm0KR in
SAS 9.2), which has been demonstrated to be superior to
alternative methods of computing the degrees of freedom
(Arnau, Bono, & Vallejo, 2009; Fouladi & Shieh, 2004;
Kowalchuk, Keselman, Algina, & Wolfinger, 2004; Schaalje,
McBride, & Fellingham, 2002; Skene & Kenward, 2010a).
Additionally, for the SAS PROC MIXED analyses, several
different model covariance structures were fitted (cf. Keselman
et al., 1999b; Kowalchuk et al., 2004; Littell et al., 2000)—

namely UN, CS, ARH(1), CSH, HF, and RC (see Table 1 and
Wolfinger, 1996, for detailed specifications of these struc-
tures). It should be noted that PROC MIXED offers a large
amount of flexibility for specifying covariance structures. For
example, the CS structure can be fit in two different ways (cf.
Littell et al., 2000). The SAS syntax that we used for the six
variants is available as supplemental material (Supplement A)
in the journal’s electronic supplementary archive.

Data generation

We simulated multivariate normally distributed data us-
ing the method of Kaiser and Dickman (1962), and
nonnormal correlated data via the power method trans-
formation proposed by Headrick and coworkers
(Headrick, 2002; Headrick & Kowalchuk, 2007;
Headrick, Sheng, & Hodis, 2007). The power method
is based on work by Fleishman (1978) and by Vale and
Maurelli (1983). Fleishman proposed a moment-
matching approach to simulate nonnormally distributed
data. First, normal deviates are generated. Then a poly-
nomial transform of order three is applied, with the
polynomial coefficients selected so that the first four
moments of the transformed data match the corresponding
moments of the target distribution. Headrick (2002) en-
hanced this approach by using fifth-order polynomials.
Therefore, it is possible to match the first six moments of
a distribution. It is also possible to match a wider range of
distributions (e.g., combinations of skewness and kurtosis).

Following Headrick (2002) and Headrick et al. (2007),
our simulations started by generating K independent stan-
dard normal deviates (X 0 X1 . . . XK; μ 0 0, σ 0 1) with the
SAS IML function RANDNORMAL. From these indepen-
dent normal deviates, K correlated normal deviates Z 0 Z1 . . .
ZKwith population correlationmatrixR*were generated using
the method of Kaiser and Dickman (1962). For the K × K
matrix R*, the Cholesky decomposition U'U 0 R* (whereU is
an upper triangular matrix and U' is the transpose of U)
yielded K(K + 1)/2 coefficients. These coefficients were used
to compute K linear combinations of each Xk, Z 0 UX, which
resulted in Z, correlated with the population correlation matrix
R* (for an example, see Headrick et al., 2007, p. 11; Kaiser &
Dickman, 1962). As Vale and Maurelli (1983) have shown, if
a polynomial transformation is applied to these correlated
normal deviates, the correlations between the resulting non-
normal deviates will not be equal to the correlations between
the normal deviates that they were based on. Therefore, to
produce K correlated nonnormal deviates with the intended
population correlation matrix R, the Zk are generated with an
intermediate correlation matrix R* that was selected so that,
after applying the polynomial transformations to the Zk, the
target correlation matrix R results. Headrick (2002) noted that
if the correlation between a pair of standard normal deviates

5 Kenward and Roger (2009) recently suggested an improved variant
of their procedure. However, because we are not aware of a statistical
package incorporating the improved algorithm, the results reported in
this article apply to the original procedure by Kenward and Roger
(1997), which was used in SAS Version 9.2.
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(Zi and Zj) is ρZiZj and then a polynomial transformation is
applied to each of the two correlated standard normal deviates,
so that two power-transformed variables (Yi and Yj) with mean
0 and variance 1 result, then the correlation ρYiYj is given by
the expected value of the product of the latter two random
variables, ρYiYj ¼ E Yi � Yj

� �
(see Eq. 26 in Headrick, 2002).

To determine the intermediate correlation matrix R*, this
equation is solved for ρZiZj, separately for each of the pairwise
correlations, and given the to-be-applied polynomial coeffi-
cients (see Eq. 2 below) and the target correlations ρYiYj. We
solved the equation numerically with the Wolfram Research
Mathematica function NMinimize. The values of ρZiZj consti-
tute the intermediate correlation matrix R*.

In the next step, the correlated normal deviates Zk were
transformed into nonnormal deviates Yk, each with mean 0
and variance 1, using the polynomial transformation

Yi ¼ c1iZi þ c2iZi þ c3iZ
2
i þ c4iZ

3
i þ c5iZ

4
i þ c6iZ

5
i ; i ¼ 1 . . .K:

ð2Þ

The polynomial coefficients c1i through c6i were chosen so
that the first six standardized cumulative moments of Yk
matched the first six moments of the target distribution—χ(2)
or LogNormal[0, 1] (Headrick, 2002). The moments of a
power-transformed normal deviate are available in closed form
(cf. Headrick, 2002). We used a numerical procedure (Wolfram
ResearchMathematicaNMinimize) to find the coefficients min-
imizing the sum of squared deviations between the sixmoments
of the power-transformed normal deviate and the corresponding
six moments of the target distribution [e.g., χ(2)], with an
accuracy goal of 10−20.

The Yk are nonnormal deviates with mean 0 and variance 1,
correlated with the desired population correlation matrix R. To
create correlated nonnormal deviates with the desired popula-
tion covariance matrix Σ, in the final step, each Yk was multi-
plied by the desired standard deviation. Note that we simulated
data corresponding to the null hypothesisμ1 0 μ2 0 . . .0 μK0 0.

To check the quality of our simulations, we computed the
empirical covariance matrix, as well as the empirical
moments of the individual random variables, for each of
the 36 simulated multivariate distributions (i.e., for each
combination of distribution of the simulated response vari-
able, covariance structure, and number of factor levels). For
each of these conditions, 1,959,999 data sets were simulated.
The maximal deviation of the empirical Box (1954) ε from
the target ε (1.0 or .5) was 0.51 %. The average root-mean
squared deviation of the variances and covariances in the
upper diagonal of the empirical covariance matrix, as com-
pared to the intended covariance matrix (see Supplement B),
was 0.0047, with a maximum of 0.101.

The first four empirical standardized moments (mean, var-
iance, skewness, and kurtosis) were also found to be within a

narrow range around the target values. Only for the log-
normal distribution did the kurtosis show rather large variabil-
ity, which is to be expected, because the fourth sample mo-
ment about the mean is strongly affected by extreme values.

Taken together, the empirical covariance matrices and the
empirical moments showed that the simulation algorithm
worked as expected.

Simulation program

The simulation program was written in the SASMACRO and
SAS/IML languages and was run on version 9.2 of SAS.

Results

Type I error rates

For each simulated data set, the p value produced by a given
analysis approach was compared to the nominal α level of .05,
and the empirical Type I error rate ba for a condition (e.g., N 0

3, K 0 4, normally distributed data, CS population covariance
structure) was computed as the number of tests in which p <α,
divided by the total number of p values for this condition (i.e.,
5,000, if all tests produced a p value). The empirical Type I
error rates are binomially distributed; thus, the 95 % Wald

confidence interval for the proportion ba is ba � 1:96�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiba 1� bað Þ N=
p

where N is the number of simulations. If, for
example, the observed Type I error rate was .05 (i.e., 250 tests
out of 5,000 were significant at the nominal α level of .05),
then the true Type I error rate could be expected to be in the
interval [.0456, .0544] with a probability of 95 %.

For the PROC MIXED analyses, we analyzed the empir-
ical Type I error rates in five different cases: (1) fitting the
correct covariance structure—for instance, fitting an UN
structure if the data were generated using a population
covariance matrix of type UN; (2) selecting the best PROC
MIXED model in terms of the AIC (Akaike, 1974); (3)
selecting the model on the basis of the BIC (Schwarz,
1978); (4) unconditionally fitting an unstructured (UN)
model covariance matrix; or (5) unconditionally fitting a
covariance matrix of the “heterogeneous compound symme-
try” (CSH) type. In the following discussion, PROC
MIXED Variants 1–5 are denoted by PMCC, PMAIC,
PMBIC, PMUN, and PMCSH, respectively. Thus, as, for ex-
ample, in Kowalchuk et al. (2004), one variant of the PROC
MIXED approach used prior knowledge about the popula-
tion covariance structure. It is, of course, unlikely that a
researcher will know in advance which covariance structure
his or her data will exhibit, but fitting the correct covariance
structure should represent the best possible performance of
the mixed-model approach. The two variants selecting the
best covariance structure using likelihood-based information
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criteria attempted a trade-off between global goodness of fit
and the number of model parameters (cf. Keselman et al.,
2002). Thus, at least in theory, these information criteria
should select the most parsimonious model still showing an
acceptable level of goodness of fit. Finally, one of the two
remaining variants always assumed a UN covariance struc-
ture, which should incorporate all possible empirical covari-
ance structures, because it places no constraints on the
structure of the covariance matrix. This flexibility comes
at the cost of having to estimate a large number of param-
eters, making it impossible to use if a high number of factor
levels is combined with a small sample size, and also po-
tentially causing problems with numerical convergence (cf.
Gomez et al., 2005). The CSH structure, on the other hand,
is in a sense located between the UN structure and the CS
structure (for a discussion, see, e.g., Wolfinger, 1996). The
CS structure has equal variances and equal correlations. The
CSH structure allows for unequal variances (i.e., entries on
the main diagonal), while still assuming a constant correla-
tion between all pairs of factor levels (Wolfinger, 1996).
Note that the CSH structure is somewhat similar to the HF
structure (Wolfinger, 1996), the latter corresponding to the
spherical “Type H” structure discussed by Huynh and Feldt
(1970). We opted for the CSH rather than the HF structure
because, in our experience with analyzing real data sets,
PROC MIXED models using the HF covariance structure
frequently show problems with convergence, while fitting
the CSH structure seems less problematic. This assumption
was clearly supported by the convergence rates observed in
our simulations (see the Convergence Rates section below).

Normally distributed data The empirical Type I error rates
for normally distributed data are displayed in Fig. 1. Data
points above the red or below the blue horizontal line
indicate liberal or conservative error rates, respectively,
according to Bradley’s liberal criterion. A procedure can
be considered robust if all data points are located between
the blue and red horizontal lines. Note that in Fig. 1 the
filled circles are for nonspherical population covariance
matrices with homogeneous variances (denoted by HV);
these data will be discussed in the following section.

Across the 204 combinations of population covariance
structure [ARH(1), CS, RC, and UN], number of factor
levels, and sample size, the univariate approach with
Huynh–Feldt df correction (HF) controlled the Type I error
rate according to Bradley’s (1978) liberal criterion, except
for four cases characterized by K 0 16 and N < 7, for which
the error rate was slightly higher than .075. At the smaller
samples sizes, the error rates had a small tendency toward
liberal error rates for the nonspherical population covariance
structures, and a smaller tendency toward conservative error
rates for the spherical CS structure. As expected, the GG df
correction frequently resulted in conservative error rates at

the smaller sample sizes, especially for the spherical CS
population covariance matrix (open circles in Fig. 1; cf.
Huynh & Feldt, 1976). The multivariate approach (T2) al-
ways showed almost perfect control of the error rate, which
was expected because its assumptions were all met.
However, T2 is applicable only for N ≥ K. When fitting a
UN covariance structure, PROC MIXED required N > K for
convergence (see the Convergence Rates section below) and
produced liberal error rates for N 0 K + 1. The latter result
was also obtained by Muller et al. (2007). Note that except
for these conditions, the error rates were identical to the
error rates produced by the multivariate approach, which is
the expected result (Skene & Kenward, 2010a). When fit-
ting the CSH structure, PROC MIXED frequently produced
conservative error rates at small sample sizes and some
liberal error rates at higher sample sizes. Selecting the
covariance structure via AIC or BIC worked reasonably well
for normally distributed data. At K 0 4, both variants pro-
duced some liberal error rates at N < 10. Additionally,
selection via AIC or BIC produced liberal error rates if
N 0 K + 1, which can be attributed to the liberal
behavior of PROC MIXED fitting a UN structure in this con-
dition. This problem did not occur for selection via BIC if K 0

16. Some error rates were conservative at N 0 3 or 4, especially
for selection via BIC. Finally, if the correct covariance struc-
ture was fit, the error rates were close to the nominal values,
except for the two smallest samples sizes when the population
covariance structure was ARH(1), and of course liberal rates
for the UN population covariance structure at N 0 K + 1.

Taken together, for normally distributed data the HF test
controls the Type I error rate with only very few exceptions
and can therefore be recommended, especially if extremely
small sample sizes are combined with high numbers of
factor levels of the within-subjects factor. The multivariate
approach worked perfectly if N ≥ K. For these sample sizes,
future studies should compare the power of the HF and the
T2 tests. Results by Algina and Keselman (1997) have
suggested that the multivariate approach would be more
powerful than HF if the sample size was large, the deviation
from sphericity was large (i.e., ε < .85), and the number of
factor levels was small. PMAIC, PMBIC, and the benchmark
variant PMCC performed reasonably well, but all of them
occasionally produced conservative or liberal Type I error
rates at sample sizes smaller than 20. For N > K + 1, the
error rates for PMUN were identical to those produced by the
multivariate approach. PMCSH produced many nonrobust
results and can therefore not be recommended.

χ2(2)-distributed data Figure 2 shows the Type I error rates
for χ2(2)-distributed data. The results indicate a strong
effect of the combination of population covariance matrix
and number of factor levels, compatible with previous find-
ings (Berkovits et al., 2000). For the spherical CS matrix,
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there was a general tendency toward conservative error
rates, increasing with the number of factor levels. This
problem was most pronounced for PROC MIXED fitting a
CSH structure, followed by the GG and the HF tests. The
multivariate approach also generally produced slightly con-
servative error rates for the CS covariance structure, but in
most cases met Bradley’s liberal criterion. PROC MIXED
with covariance structure selection via AIC or BIC con-
trolled the error rate for N > K + 1. PROC MIXED produced
robust results when fitting the correct covariance structure.

In contrast to this generally conservative behavior observed
for the CS population covariance matrices, for the nonspher-
ical population covariance matrices the error rates were often
liberal if the data were χ2(2) distributed. In fact, at K 0 4 all
procedures produced liberal error rates, except for the univar-
iate df-adjusted approaches at the highest sample sizes. At K 0
8, the univariate df-adjusted procedures controlled the Type I
error rate except at the smallest samples sizes, where the GG
test again erred on the conservative side, and HF produced
some liberal error rates. The multivariate approach and PROC
MIXED produced liberal results. At K 0 16, the HF test
showed robust behavior for the nonspherical population co-
variance matrices, while the GG procedure often behaved
conservatively, and the error rates produced by the remaining
procedures were frequently liberal. It should be noted that
even at the three highest sample sizes (N ≥ 50), only GG
and HF behaved robustly, while the problems with nonrobust
Type I error rates remained for the other procedures. Across all
conditions, the error rates were closest to the nominal value for
procedure HF, but even this procedure produced many liberal
or conservative error rates according to Bradley’s liberal
criterion.

Log-normally distributed data Figure 3 shows the Type I
error rates for log-normally distributed data. In contrast to
the results for the χ2(2)-distributed data, here there was a
general tendency toward conservative error rates. At the two
largest sample sizes (N 0 70 or 100), several liberal values
were observed. The number of conservative values was
higher for the CS than for the nonspherical population
covariance structure and increased with the number of factor
levels. The error rates produced by the T2 test were more
frequently within Bradley’s (1978) interval than for the df-
corrected univariate approaches. Surprisingly, the number of
nonrobust results was nonmonotonically related to the sam-
ple size for the multivariate approach, with two peaks at
intermediate and large sample sizes (see Fig. 6 below). At
the smaller samples sizes where the multivariate test was not
applicable, PROC MIXED with covariance structure selec-
tion via AIC or BIC showed slightly better control of the
Type I error rate than did the univariate approaches, al-
though many values were still conservative according to
Bradley’s liberal criterion. Additionally, because PMUN

again produced liberal results for N 0 K + 1, PMAIC and
PMBIC also showed liberal error rates in most of these
conditions. Notably, the empirical error rates for PROC
MIXED with covariance structure selection via information
criteria were often closer to the nominal value than if the
correct covariance structure was fitted, especially at K 0 4.

Nonspherical population covariance structures
with homogeneous variances

The results showed a pronounced effect of the population
covariance structure for χ2(2)-distributed data. Can the ob-
served differences between the error rates for the CS struc-
ture and for the remaining structures be attributed to the
deviation from sphericity (i.e., ε 0 1.0 vs. ε 0 .5), or to the
fact that the K variances were equal for the CS population
covariance matrix but unequal for the other matrices? To
gain a preliminary insight into this question, we decided to
conduct additional simulations for population covariance
structures with homogeneous variances but ε 0 .5. We
denote these structures by HV, for “homogeneous varian-
ces.” For K 0 8 or 16, we used a first-order autoregressive
correlation structure. The correlations in this structure fol-
low the same pattern as for the ARH(1) matrix depicted in
Table 1, but the variances were all identical and equal to
16.0. For K 0 8 and K 0 16, the matrix has ε 0 .5 if ρ 0 .760
or .632, respectively. For K 0 4, it is not possible to construct
an AR(1) matrix with ε 0 .5. Therefore, we created a matrix
with all variances set to 16.0 and with the correlations
randomly sampled from the intervals [−.9, −.3] and [.3,
.9]. We denote this matrix by UNs, for “unstructured–same
variance.” The population covariance matrices are displayed
in Supplement B. The simulation results for the nonspheri-
cal matrices with equal variances are shown by the filled
circles in Figs. 1–3. For normal data (Fig. 1), the Type I
error rates did not differ strongly between the nonspherical
matrices with homogeneous versus heterogeneous popula-
tion variances. At K 0 4, PMAIC, PMBIC, and PMCSH pro-
duced more liberal error rates at small sample sizes with the
HV population covariance structure than with the remaining

�Fig. 1 Normal data: Empirical Type I error rates for the eight analysis
procedures (rows), as a function the number of factor levels (columns),
sample size (N), and the population variance–covariance structure.
Data points located between the red and blue lines are considered
robust according to Bradley’s (1978) liberal criterion. The symbols
indicate the different population covariance structures: boxes, ARH(1);
open circles, CS; triangles, RC; diamonds, UN; and filled circles, HV
(nonspherical population covariance structure with homogeneous var-
iances; see the following section). GG and HF indicate univariate
approaches with Greenhouse–Geisser and Huynh–Feldt df corrections,
respectively; T2, the multivariate approach; PMCSH and PMUN, PROC
MIXED fitting a CSH or a UN covariance structure, respectively;
PMAIC and PMBIC, PROC MIXED with model covariance structures
selected via information criteria; and PMCC, PROC MIXED fitting the
correct (population) covariance structure
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structures. At K 0 8, procedure HF produced a liberal result
at N 0 4 or 5 for the AR(1) population covariance structure,
but not for the nonspherical structures with heterogeneous
population variances. PMCSH was liberal at larger sample
sizes for the AR(1) but not for the UN population covari-
ance structure, and PMAIC and PMBIC both produced one
additional liberal error rate with the AR(1) structure. At K 0
16, the AR(1) structure resulted in one additional liberal
error rate for HF (at N 0 3), and in liberal error rates for
PMCSH at large sample sizes.

For the χ2(2)-distributed response variable (Fig. 2), at
K 0 4 GG, HF, T2, PMUN, and PMCC showed robust
behavior for the UNs population covariance structure,
with only four exceptions, in contrast to the generally
liberal error rates observed with the population covari-
ance matrices with heterogeneous variances. PMAIC and
PMBIC also controlled the Type I error rate with the
UNs structure if N > 10. At K 0 8, where the error rates
of most procedures were liberal with heterogeneous
population variances, the AR(1) structure removed this
tendency toward liberal decisions, resulting in robust
behavior for HF, T2, PMUN, PMAIC, and PMBIC in most
conditions. Essentially the same pattern was observed at
K 0 16. Thus, for the χ2(2)-distributed response vari-
able, nonspherical population covariance matrices with
homogeneous variances removed the strong tendency
toward liberal results observed for the population covariance
structures with heterogeneous variances. However, the error
rates for the nonspherical population covariance matrices with
homogeneous variances were not identical to the results for
the CS structure, which shows variance homogeneity and
covariance homogeneity, and for which the error rates were
often conservative.

For the log-normal data (Fig. 3), the Type I error rates
generally tended to be lower for the nonspherical population
covariance matrices with homogeneous variances, as com-
pared to the conditions with heterogeneous population var-
iances. This resulted in more frequent conservative error
rates at smaller sample sizes, but also in the absence of
liberal error rates at the three largest sample sizes. Again,
the error rates for the nonspherical population covariance
matrices with homogeneous variances were not identical to
the results for the CS structure.

Taken together, these results indicate that both vari-
ance heterogeneity and correlation heterogeneity affect
the Type I error rates for nonnormal data, and this
finding is compatible with the results by Wilcox et al.
(2000). Heterogeneous variances probably present a
stronger problem than do heterogeneous covariances.
Additional studies will be desirable here. On a more
general level, our study shows that it is worthwhile to
test a wider variety of population covariance structures
than those included in previous studies.

Convergence rates

The univariate and multivariate approaches are based on
least-squares estimation and always produce a p value for
the test of the omnibus hypothesis, given that the sample
size is high enough to provide sufficient residual dfs. In
contrast, the mixed-model analyses based on (restricted)
maximum-likelihood can exhibit problems with conver-
gence, and thus fail to produce a p value for a given data
set. While most previous studies have ignored this problem
(but see Gomez et al., 2005), for researchers planning to
apply this specific type of analysis, it is important to know
how likely these convergence problems will be for a given
condition. For this reason, we report the proportions of tests
in which a particular analysis procedure failed to produce a
p value.

As can be seen in Supplement C, PROC MIXED always
converged when fitting the CS model covariance structure.
For the ARH type, the convergence rate was higher than .98
in all conditions. With the RC type, we observed some
convergence rates smaller than .95 at N 0 3, but with only
a single exception, the convergence rates were higher than
.90 even at this smallest sample size. For the CSH type,
convergence rates higher than .95 were obtained except
at the smallest samples sizes (N ≤ 4 for K 0 4, N ≤ 5
for K 0 8, and N ≤ 6 for K 0 16). For the UN model
covariance structure, the data indicated that the conver-
gence rate was close to 1.0 as soon as the sample size
was larger than the number of factor levels (N > K).
Compatible with our own experience when analyzing
real data, the problems with convergence were most
pronounced when fitting the HF type model covariance
structure. Here, at least twice as many subjects as factor
levels seemed to be required for convergence rates
higher than .9, and even much larger sample sizes for
the log-normally distributed data.

In sum, fitting the more complex covariance structures
with PROC MIXED can be a problem when sample sizes
are small. In most cases, however, the convergence rates are
very high. Note that our results on Type I error rates when
selecting the model covariance structure via AIC or BIC
indirectly consider problems with convergence, because if
one PROC MIXED variant fails to converge, another model
covariance structure will be selected. Thus, if Figs. 1–3
show that the Type I error rate for model selection via AIC
or BIC is acceptable, then there were no problems with
convergence.

�Fig. 2 Chi-square-distributed data: Empirical Type I error rates for the
eight analysis procedures (rows), as a function the number of factor
levels (columns), sample size (N), and the population variance–covari-
ance structure (symbols). The format is the same as in Fig. 1
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Discussion

In a simulation study, we obtained the empirical Type I error
rates of different procedures for analyzing data from a
repeated measures design with a single within-subjects fac-
tor and no grouping factor, with a focus on extremely small
sample sizes and nonnormal data. In fact, we studied for the
first time the behavior of several different analysis approaches
for sample sizes smaller than six combined with a high num-
ber of levels of the within-subjects factor (K 0 8 or 16). We
also studied two distributions of the response variable show-
ing stronger deviations from normality than did the nonnormal
distributions included in some previous simulation studies.

Figure 4 provides a visualization of the robustness of the
different analysis approaches for the case of normal data.
The vertical axis displays the number of liberal or conser-
vative Type I error rates (according to Bradley’s, 1978,
liberal criterion) across the five population covariance struc-
tures (i.e., including the nonspherical structures with homo-
geneous variances) and as a function of the factors varied in
the simulation. The ideal procedure would show a value of
zero in all conditions. The worst possible outcome would be
a value of five in all conditions, which would indicate that a
given analysis approach produced nonrobust Type I error

rates for all combinations of number of factor levels, sample
size, and population covariance structure. The superior per-
formance of the HF and the T2 approaches is obvious: For
these procedures, virtually all data points are located within
the gray area indicating control of the Type I error rate. In
contrast, for nonnormal data, Figs. 5 and 6 show that in most
cases the number of nonrobust Type I error rates was higher
than 0, visualizing our conclusion that none of the proce-
dures is robust against the (admittedly rather strong) devia-
tions from nonnormality that we studied.

We begin our discussion with the case of normal data.
Here, as expected, the exact multivariate test (T2) controlled
the Type I error rate in all conditions (according to Bradley’s
liberal criterion). This approach requires N ≥ K, however, so
it cannot be used in typical experiments from, for example,
psychophysics, where the number of subjects is often
smaller than the number of factor levels. With only very
few exceptions, the univariate approach with Huynh–Feldt
correction for the degrees of freedom controlled the Type I
error rate even at N 0 3, and can thus be recommended for
designs with extremely small sample sizes, given that the
response variable is normally distributed. Note that we only
analyzed Type I error rates but did not compare the power of
the T2 and HF procedures. This is an important task for
future research. Previous results for higher sample sizes have
suggested that the relative power of the two approaches
depends on the combination of N and K and on the deviation
from sphericity of the population covariance matrix (Algina &
Keselman, 1997). While the PROC MIXED variants fitting a

Fig. 4 Normal data: Number of nonrobust Type I error rates (accord-
ing to Bradley’s liberal criterion) across the five population covariance
structures, as a function of the analysis procedure (panels), number of
factor levels (K), and sample size (N). Data points within the gray area
indicate that the procedure controlled the Type I error rate (i.e., pro-
duced no nonrobust error rates). Red boxes indicate K 0 4; black
circles, K 0 8; and blue triangles, K 0 16. GG and HF indicate

univariate approaches with Greenhouse–Geisser and Huynh–Feldt df
corrections, respectively; T2, the multivariate approach; PMCSH and
PMUN, PROC MIXED fitting a CSH or a UN covariance structure,
respectively; PMAIC and PMBIC, PROC MIXED with model covari-
ance structures selected via information criteria; PMCC, PROCMIXED
fitting the correct (population) covariance structure

�Fig. 3 Log-normally distributed data: Empirical Type I error rates for
the eight analysis procedures (rows), as a function the number of factor
levels (columns), sample size (N), and the population variance–co-
variance structure (symbols). The format is the same as in Fig. 1
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UN model covariance structure or selecting the model covari-
ance structure via information criteria (AIC and BIC) con-
trolled the Type I error rates in most conditions for normal
data, they performed less convincingly than the two traditional
approaches. Therefore, we do not recommend the use of
PROC MIXED unless there are missing data, which should
not be the case for controlled experiments. In any case, it can
be concluded that several procedures for the analysis of re-
peated measures data show excellent control of the Type I
error rate for normal data, even for extremely small sample
sizes.

In contrast, for nonnormally distributed data, our data
indicate serious problems with the control of Type I error
rates for all analysis procedures, which is compatible with

previous studies simulating small sample sizes (see the
introduction). This is visualized in Figs. 5 and 6, where
most data points are located outside the gray area that
indicates robust Type I error rates.

For χ2(2)-distributed data, we observed a marked differ-
ence between the spherical (CS) population covariance
structure and the nonspherical structures. For the CS popu-
lation covariance matrix, error rates tended to be conserva-
tive, while for the remaining structures, most values were
liberal (see Fig. 2). For the nonspherical covariance struc-
tures with homogeneous variances, the results were in be-
tween those in the two former cases. It would be interesting
to study the effects of nonsphericity versus variance hetero-
geneity in greater detail. For log-normally distributed data,

Fig. 5 Chi-square-distributed data: Number of nonrobust Type I error rates (according to Bradl liberal criterion) across the five population
covariance structures. The format is the same as in Fig. 4

Fig. 6 Log-normally distributed data: Number of nonrobust Type I error rates (according to Bradley’s liberal criterion) across the five population
covariance structures. The format is the same as in Fig. 4
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we observed conservative Type I error rates in the majority
of conditions, especially at smaller sample sizes. At sample
sizes greater than 50, several liberal error rates were ob-
served. For both distributions, not a single procedure
showed acceptable control of Type I error rates across a
wider range of settings, so that, unfortunately, none of the
procedures can be recommended.

It is interesting to compare our results to the effects of
nonnormality in a completely randomized (independent-
groups) design containing only between-subjects factors. In
that case, many studies have shown that for ANOVAs and t
tests, departures from normality are not critical (e.g., Glass,
Peckham, & Sanders, 1972; Harwell, Rubinstein, Hayes, &
Olds, 1992; Lix, Keselman, & Keselman, 1996; Schmider,
Ziegler, Danay, Beyer, & Bühner, 2010). For t tests, the Type I
errors still meet Bradley’s liberal criterion even with extreme
deviations from normality, at least if the sample size is higher
than about 20, if there are (approximately) equal numbers of
observations per group (balanced design) and if two-tailed
tests are conducted (Kubinger, Rasch, & Moder, 2009;
Sawilowsky & Blair, 1992). Therefore, for between-
subjects designs, textbooks do not recommend against
the application of the general linear model for nonnor-
mal data (e.g., Maxwell & Delaney, 2004, pp. 111ff).
For between-subjects designs, the standard ANOVA is
also known to be robust to moderate violations of the homo-
geneity of variances, unless the sample sizes are not identical
between groups (Lix et al., 1996; Maxwell & Delaney, 2004).
Our results show that—unfortunately—the relatively high
robustness against nonnormality of the general linear model
reported for a completely randomized design does not gener-
alize to a repeated measures design.

One of the most surprising findings was that for nonnormal
correlated data, some analysis approaches produce liberal or
conservative Type I error rates even at samples sizes as high as
100 (see Figs. 5 and 6). Thus, simply increasing the sample
size does not guarantee robustness when the data are non-
normal. In a sense, this indicates that the intuition of experi-
menters from the field of psychophysics is correct: These
experiments typically use only a small number of subjects
but collect many trials per subject and experimental condition,
rather than testing a large number of subjects but collecting
only few trials. If many trials are available per subject and
condition (e.g., m 0 100), then according to the central limit
theorem (see Le Cam, 1986, for a historical review) the mean
of the observations across trials will be approximately nor-
mally distributed, even if the underlying population distribu-
tion of the response measure is nonnormal. Textbooks on
statistics typically state that the sample mean will be approx-
imately normally distributed if the number of observations is
greater than 30 (e.g., Hays, 1988). For the log-normal distri-
bution that we studied, the skewness and kurtosis of the
sample mean with m 0 30 observations are 1.1 and 6.0,

respectively, which indicates a distribution much closer to
the normal distribution than the underlying distribution of
the response measure. It would be interesting to investigate
for which values of skewness and kurtosis the analysis proce-
dures produce robust Type I error rates. Given this informa-
tion, and some information concerning the distribution of the
response measure, it would then be possible to decide how
many trials per condition are be required.

Besides averaging across a rather large number of trials per
subject and experimental condition in order to make use of the
central limit theorem, there are four other potential solutions to
the problem of nonrobust Type I error rates for nonnormally
distributed data from a repeated measures design.

First, the data values could be transformed prior to con-
ducting the statistical tests. For a log-normal distribution, or
for an approximately log-normal distribution such as re-
sponse times, taking the logarithm of the observed values
would be the obvious choice. In our experience, researchers
analyzing response times seem reluctant to apply this trans-
formation. One reason might be that the transformation
would change the interpretation of interaction effects, which
are often important in factorial designs. Several transforma-
tions are discussed or recommended in textbooks on statis-
tics, such as, for example, an arcsine-square root transform
for proportions (e.g., Maxwell & Delaney, 2004; Winer,
Brown, & Michels, 1991). However, simulation studies
investigating the effects of transformations for repeated
measures analyses are missing, and even for data from
completely randomized designs, a debate has concerned
whether or not transformations should be used (Games,
1983, 1984; Levine & Dunlap, 1982, 1983). It is also not
always the case that researchers will know what distribution
their data will exhibit. However, at least for a completely
randomized design, it might be possible to select the appro-
priate transform on the basis of the sample characteristics
(Rasmussen, 1989). Again, no corresponding simulation
studies seem to exist for repeated measures designs.

Second, the parametric procedures designed for the anal-
ysis of normal repeated measures data can be combined with
“robust” estimators like trimmed means (Berkovits et al.,
2000; Keselman et al., 2000; Wilcox et al., 2000) or M
estimators (Wilcox & Keselman, 2003). The existing simu-
lation studies evaluating the Type I error control of this
approach do not cover a range of sample sizes, numbers of
factor levels, and population covariance structures compa-
rable to the present study, and they also indicate that the use
of robust estimators will not in all cases result in sufficient
control of the Type I error rate.

Third, statistical software is increasingly available for
fitting generalized linear models or nonlinear models that
are applicable to the data from repeated measures designs
(e.g., Breslow & Clayton, 1993; Davidian & Giltinan, 1998;
Hu, Goldberg, Hedeker, Flay, & Pentz, 1998; Jaeger, 2008;
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Lee & Nelder, 2001; McCullagh & Nelder, 1989; Vonesh &
Chinchilli, 1997). If the distribution of the response variable
is known from previous research or can be estimated from
the sample, then a model designed for the specific distribu-
tion can be used. For instance, for log-normal data, software
including SAS PROC NLMIXED is available for fitting
nonlinear mixed-effects models (e.g., Davidian & Giltinan,
2003; Jin, Hein, Deddens, & Hines, 2011; Littell et al.,
2006). For binomially distributed data (e.g., error rates),
several multiple logistic regression approaches accounting
for the correlation structure of the data have been proposed
(Hu et al., 1998; Kuss, 2002; Lipsitz, Kim, & Zhao, 1994;
Neuhaus, Kalbfleisch, & Hauck, 1991; Pendergast et al.,
1996; Spiess & Hamerle, 2000). However, not much is
known about how these approaches behave if small sample
sizes are combined with high numbers of factor levels and
with different types of population covariance matrices (e.g.,
Austin, 2010). Specifying the correct model can also present
a challenge to researchers, due to either the high flexibility
or the restrictions of the software.

Finally, nonparametric approaches might be an alternative,
such as, for example, the framework based on rank-score tests
proposed by Brunner and colleagues (e.g., Brunner, Munzel, &
Puri, 1999; Brunner & Puri, 2001). This method is available in
SAS PROC MIXED, but it requires N ≥ K and has not been
tested extensively in simulation studies.

Therefore, it has to be concluded that while there are
several promising alternatives to parametric approaches as-
suming normality, it remains for future research to show
whether these procedures will indeed solve the problems with
nonrobust Type I error rates for nonnormal data in a repeated
measures design that we have identified in our study.

Summary and recommendations

In this study, we obtained empirical Type I error rates for
several procedures available for the analysis of data from a
repeatedmeasures design.We simulated a design with a single
within-subjects factor and no grouping factors. Our focus was
on specific designs often encountered in experimental psy-
chology and the neurosciences, where high numbers of factor
levels of the within-subjects factor(s) are studied in small
samples, and several important response measures, such as
response times, are nonnormally distributed.

Several analysis approaches showed good control of the
Type I error rate for normal data, while none of the proce-
dures was found to be robust against nonnormality.

In the following summary, we propose some guidelines
for selecting an analysis procedure for completely within-
subjects designs.

Figures 4–6 visualize the control of the Type I error rate
for the eight analysis procedures that we studied. Each data

point shows the number of nonrobust Type I error rates at a
nominal α level of .05, according to Bradley’s (1978) liberal
criterion, which considers an empirical Type I error rate ba as
being acceptable if it is contained within the interval :025
� ba � :075. While researchers often have some idea about
whether their response measure is approximately normally
or nonnormally distributed, it is rather unlikely that reliable
information about the population variance–covariance struc-
ture will be available. Therefore, we studied five quite
different population variance–covariance structures. Each
data point in Figs. 4–6 shows the number of nonrobust
Type I error rates across the five population covariance
structures. If this number is 0 (i.e., the data point is located
within the gray area), our study indicates that for a given
number of factor levels (K) and sample size (N), the proce-
dure adequately controls the Type I error rate across a wide
range of possible population covariance structures.

Our simulation results show that it is primarily important
to distinguish between the cases of normally and nonnor-
mally distributed response measures.

For normal data, Fig. 4 shows that the multivariate
approach (T2) controls the Type I error rate. However, this
procedures requires N ≥ K, and therefore cannot be used if a
small sample is studied under a high number of factor levels.
For N < K, the univariate approach with Huynh–Feldt cor-
rection for the degrees of freedom can be recommended,
which produced only very few nonrobust error rates. PROC
MIXED unconditionally fitting a univariate covariance
structure performed identically to the multivariate approach
for N > K + 1. It could therefore be used in the case of
missing data (MCAR or MAR), but missing data are typi-
cally not a problem in controlled laboratory experiments.
The remaining procedures (GG and PROC MIXED with
selection of the model covariance structure via information
criteria) did not show acceptable control of Type I error rates
across conditions. Note that PMCC is only of theoretical
interest here, because the population covariance structure
will typically be unknown. Finally, our study only obtained
Type I error rates. Previous studies have shown that in terms
of statistical power, the recommended procedures HF and T2

can differ quite substantially, depending on the sample size,
K, and the nonsphericity of the covariance matrix. Simple
rules for deciding between the two procedures can be found
on page 215 in Algina and Keselman (1997), albeit only for
sample sizes greater than K + 4.

For nonnormally distributed response measures, Figs. 5
and 6 show that none of the procedures that we studied was
able to control the Type I error rate across a larger range of
conditions. Notably, even at a sample size of 50 or 100,
liberal or conservative error rates were observed in a sub-
stantial number of cases. Although several potential solu-
tions exist to the problem of nonnormal data in a repeated
measures design (see the Discussion section), it is currently
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unclear which of these alternative procedures can be recom-
mended. Therefore, our recommendation for researchers
studying a nonnormal response variable is simply to
collect a higher number of trials per subject and experimental
condition (i.e., level of the within-subjects factor), and then for
each experimental condition and subject compute the mean
across trials. According to the central limit theorem, with
increasing numbers of trials, this sample mean will approach
a normal distribution, even if the underlying responsemeasure
strongly deviates from normality. Therefore, if a sufficient
number of trials is collected per subject and experimental
condition, the dependent variable in the repeated measures
ANOVA can always be considered normally distributed, and
therefore either the HF or the T2 procedure can be used. The
necessary number of trials per condition will of course depend
on the deviation from normality of the “raw” response mea-
sure. Additional research is necessary for providing exact
guidelines concerning the minimum number of trials for
which robust Type I error rates can be obtained with non-
normal response measures. At present, the number of 30 trials
typically recommended in statistics textbooks (Hays, 1988)
could be used as a lower limit.
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