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Ordered Sets with the Standardizing Property and
Straightening Laws for Algebras of Invariants

KLAUS POMMERENING

Fachbereich Mathematik der Johannes-Gutenberg-Universitiit,
Saarstrasse 21, D-6500 Mainz, Federal Republic of Germany

In Math. Z. (176 (1981), 359-374) I explicitly determined the invariants of a cer-
tain class of unipotent group actions, and obtained a positive partial answer to
Hilbert’s 14th problem for nonreductive groups. The class of groups for which the
method worked remained quite obscure. Theorem (4.2) of the present paper gives a
precise description of the cases where the algebras of invariants are spanned by
standard bitableaux, hence have a straightening law. The unipotent groups in
question (“radizielle Untergruppen” of GL,) correspond, up to conjugation, to
finite (partially) ordered sets. The promised description is done by properties of the
ordered sets that are easy to test. This is another example where combinatorial
methods are important for the theory of invariants.  © 1987 Academic Press, Inc.

1. INTRODUCTION: INVARIANTS OF NONREDUCTIVE GROUPS

In this introduction let k be an algebraically closed field for the sake of
simplicity.

The main problem of the qualitative theory of invariants is Hilbert’s 14th
problem:

Let a subgroup G of GL,, act on the polynomial algebra k[X]=
k[ X, X, ] in the natural way. Is the algebra k[ X]¢ of invariants finitely
generated?

From the historian’s point of view it is not quite correct to denote this
problem by “Hilbert’s 14th problem.” When Hilbert formulated his
problems in 1900, he believed that Maurer had solved this problem. Accor-
dingly he posed a more general problem that corresponded to his, then
fashionable, trend of banishing the theory of invariants. I do not know
when Maurer’s error was detected; at all events, nowadays, the problem as
stated above is in the center of interest.

For reductive (algebraic) groups the answer is positive by the results of
Hilbert, Weyl, and Mumford (if k has characteristic 0), and of Nagata and
Haboush (if £ has arbitrary characteristic). A detailed survey is given in
[10].
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For nonreductive groups only a few results are known:

(1) Nagata’s counterexamples, see [10].

(2) Popov’s theorem [12]: Let G be an algebraic group such that
k[ Y] is finitely generated whenever G acts rationally on an affine variety
Y with affine algebra k[ Y]. Then G is reductive.

(3) Almost all known positive results can be deduced from
Grosshans’s theorem on invariants [7]: Let GL, act on the vector space
M,, of nxn matrices, and, accordingly, on the polynomial algebra
k[M,,1=k[X;|1<i,j<n], by left translation. Let H be a closed sub-
group of SL, such that k[M,,, 1" is finitely generated. Let A be an arbitrary
affine algebra on which GL, acts rationally. Then 4" is finitely generated.

Note that an action of GL,, is needed. Of course, this is a disadvantage of
the theorem, but should we expect more in view of the negative results
above? Therefore the following seems to be a good substitute of Hilbert’s
14th problem: Find the Grosshans subgroups of GL,,, that is, the groups H
for which k[M,,, 1" is finitely generated.

More generally, a subgroup H of the reductive group G is called a
Grosshans subgroup [11], if H is observable and the algebra k[G/H] of
polynomial functions on the homogeneous space G/H is finitely generated;
the technical condition “observable” should be added to the definition in
the case of GL, above; however, unipotent groups automatically satisfy it.
There are two natural conjectures:

Conjecture 1. Each unipotent subgroup that is normalized by a
maximal torus of G (“regular subgroup,” “radizielle Untergruppe” in [11])
is a Grosshans subgroup.

This conjecture was formulated by Popov independently. Hochschild
and Mostow [97] proved, in characteristic 0, that the unipotent radicals of
the parabolic subgroups are Grosshans subgroups.

Conjecture 2. Each one-dimensional unipotent subgroup is a
Grosshans subgroup.

If k has characteristic 0, this is true by Weitzenbock’s theorem, compare
[7, p.250]. For a discussion of this theorem in positive characteristic see
[6].

Besides the reductive subgroups only a few examples of Grosshans sub-
groups are known, see the list in [11, (1.6)]. The goal of [11] and the
present paper is a systematical approach to Conjecture 1 for the case of
G =GL,. Unfortunately I can give partial results only. Therefore the con-
jecture remains open even if G = GL,,.
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2. REMARKS ON STRAIGHTENING AND INVARIANTS

Let £ be a commutative ring with 1 #0. From (2.4) k will be infinite and
entire. Let

A=Ay=k[X,;|1<i<n I <j<N]

be the polynomial algebra in nN variables, sometimes called the letter place
algebra with n letters and N places [3, 1].

(2.1) The straightening law of Doubilet, Rota, and Stein [4] says
that the standard bitableaux form a basis of A over k. (There is no need to
distinguish between bitableaux and bideterminants in the context of the
present paper.) More precisely:

Let T be a bitableau in A. Then T is a linear combination of standard
bitableaux with the properties.

(a) They have the same content as T,
(b) they are dominated by the standardized bitableau T".

(c) they have at most as many rows as T.

For (a) see [3,2,1].

In (b) the standardized bitableau T* is obtained from T by ordering the
columns of T increasingly (the rows of 7 being assumed strongly
increasingly ordered; this is more practical but, of course, less aesthetical
than the usage in [2], where the left half-rows are written decreasingly).
The dominance relation of standard bitableaux, written <2, is the column
dominance relation of [ 1], and is the reverse relation of that used in [2].
For the proof of (b) see [2] or [1]. The standard bitableau 7* itself has
the coefficient 1.

Finally (c) is implied by (b): Look at the first column.

(2.2) In straightening a bitableau 7 one does not necessarily need
all the standard bitableaux <2 7*. The proposition below gives a profitable
reduction of the number of standard bitableaux to be considered.

Let me call rth partial tableau, and denote by T', the tableau consisting
of the entries <r of the left-hand tableau of 7, where 1 <r<n. In par-
ticular 7" is the complete left-hand tableau.

PROPOSITION. Let T be a bitableau with two rows, and let the rth partial
tableau T be standard. Then T is a linear combination of standard
bitableaux whose rth partial tableaux contain the complete first row of T\ in
their first rows.
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Proof. Let us straighten 7. Any standard bitableau Z that possibly
occurs with nonzero coefficient and violates the assertion looks as follows:
The rth partial tableau Z) of Z contains an entry i in its second row that
appears only in the first row of T, Let i, be the smallest such entry. Since
the shape of Z" is at least as long as the shape of T, the emigration of i
must be compensated by an entry j in the first row of Z!” that appears only
in the second row of 7*; let j, be the smallest such entry. Since Z”) <1 T'"),
we have j, <i,.

Now choose Z such that i=i, is minimum and, i, being fixed, j=j, is
maximum. Then 7' and Z'” look as follows:

T(r)_<ll.”lp p+]“'lxlx+l'”lrl*.”)
- . PR b}
Jl...jp]*...

Z(r): ll...lpp+1...lsj*...
. . . 2
]l...]p*-.. e kk e

s=zp+1 (since j>1i,,,), and all rows strongly monotonically increasing.
The entries * will not be interesting. The position of i in the second row of
Z') might be under j or even more on the left.

I use that part C of the Capelli operator of Z that converts the entries
<j of the left-hand tableaux. It transforms T and Z into

CT:<I"'PP+1"'SiS+1"‘i,i*"' ’ >,
L ps+1x---
lp* SRS R

What about the other occurring standard bitableaux X? Since X' <2 7%, the
jth partial tableau X' is dominated by

T(j)z(i"""p’.pﬂ "'is>
Jv v dpd

On the other hand, if XY does not dominate

Z(j):<i1"'ipip+1"'isj>
jl"'jp ’

we have CX =0. Accordingly I distinguish the following five types of stan-
dard bitableaux that possibly occur in the basis expansion of T:

(a) The jth partial tableau X’ does not dominate Z/.



ORDERED SETS AND INVARIANTS 275

For all other types, X is identical with one of TV or Z. As a further
characteristic I consider which row contains i, and obtain the types:

(b) X—__(l]lpler]l\**l*’)

]ljp]*
(c) X’::(i""inip+1"'ix*"‘ ‘ '-->
jl”'jpj*"' Oy O I
(d) X’::(h..'th+1"'Rj*“'*i*---‘---)
Jr gk A
() Xz(i,l "'I'.,,l./”rl"'f\-j-\",\+2"'-‘C/ Y>.
«/} . "//,}’,)_'»] . -'.V(/l."¢/+2.. .},,”

But, by the choice of Z, the type (c) does not actually occur, and Z itself
is of type (e).

Now I apply the polarisation operator D = D, that converts i into s. It
causes DCT =0, and DCX =0 for the standard bitableaux X of types (a),
(b), and (d). Any standard bitableau X of type (e) is converted into a stan-
dard bitableau, up to sign:

Y);

remember x,, ,, y,,,;>,j>i,2s. In particular X can be reconstructed from
DCX. Consequently the standard bitableaux of type (e) are converted into
distinct standard bitableaux. Hence the basis expansion of T,

l-pp+1-ss+1x,,, X

1 eps y/)+ R yqu+ 5 Vo

DCX=(—-1)1 ”(

T: Z CxX,
is converted into the linear combination

0= Y ¢y DCX

type(e)

of distinct standard bitableaux. I conclude ¢y =0 if X is of type (e). In
particular ¢, =0.
The proposition now follows by induction. |

(2.3) If the left-hand side of T is standard, then the occurring
bitableaux of the same shape as 7 have also the same left-hand tableau as
T. This partial result was stated without explicit proof in [11]; it follows
by the shuffle product rules [3, pp. 68-70].
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The following statement seems to be the natural generalization of
Proposition (2.2):

Conjecture 3. Let T be a bitableau, and let the rth partial tableau T of
T be standard. Then T is a linear combination of standard bitableaux
whose rth partial tableaux contain in their / top rows all entries of the / top
rows of T, counted with multiplicities, for all /. (“Left-hand entries <r
cannot move downwards.”)

Of course this is equivalent with the analogical statement about standard
right-hand partial tableaux.

ExaMpLE. Consider the bitableau
e 1247|1356
- \1356(1247)°
There are 132 standard bitableaux =1 T, 52 of shape (4,4), 9% of shape

(5, 3), 57 of shape (6,2), and 1 of shape (7, 1). But we may disregard the
standard bitableaux whose 5th partial tableaux are

123 or 1235
145 14 )
Because T does not alter by exchange of its rows the same remark applies

to the right sides. Therefore the number of bitableaux to be considered is
reduced to 37+ 67+ 4%+ 1=62.

(2.4) Now I consider invariants. Accordingly I require k£ to be
infinite entire. Of course I could let be £ arbitrary and instead consider
universal invariants, that is, polynomials remaining invariant when the
base ring extends.

The group GL,(k) of k-valued points of the group scheme GL, is simply
denoted by GL,. A canonical unipotent subgroup of GL, [11, p. 363] is
given by a subset

v {(ij)|1<i<j<n}

with the property
(i’j)9 (]9 l)e Y= (l, l)e Y.

Therefore ¥ is an ordering of {1,.., n}, coarser than the natural ordering.
The corresponding canonical unipotent subgroup U= U, consists of the
matrices u = (u;) where
1 if i=j,
u,;= { arbitraryek if (i,j)e ¥,
0 else.
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The set ¥ is called the root system of U. Up to conjugationby a per-
mutation matrix, U is completely determined by the isomorphism class of
the ordered set ({1,..,n}, ¥). The group U can be described by an nxn
box with entries 1 on the diagonal, * at the positions (i, j)e ¥, O else [11],
or by its Malysev graph with edges corresponding to 1,.., n, and with an
arrow from i to jif (i, j)e ¥ and (i, )¢ ¥ for i</ <.

The element ue U, u~' = (u,), acts on A4 by the formula

w X=X+ ), uy X,

(i, e¥
(misprinted in [11, p. 364]).

(2.5) A minor is a bitableau with just one row,

(il.”imljl ”.jm)’ 1<11 < <I g”’

m

I<ji<- <j,<N.

It is an invariant of U if and only if it has the property

(L) If (i,, ) e W, then le i, |y ip)

mi-

In this case it is called a ¥W-minor. A ¥-bitableau 1s a bitableau whose rows
are ¥-minors.

Conjecture 4. The algebra AY of invariants is generated by the (finitely
many) ¥-minors (for all N).

The significance of this conjecture for Hilbert’s 14th problem would be
that then all regular subgroups of GL, were Grosshans subgroups, up to
transition to their observable hulls, compare the introduction.

The algebra A" contains all ¥-bitableaux. The goal of this paper is a
necessary and sufficient criterion, Theorem (4.2), that 4" is spanned by the
standard ¥-bitableaux; then A" is an algebra with straightening law in the
sense of [5]. The example in [11, p.370], where n=4 and ¥ = {(1,4)},
shows that this is not always true. But that example is not quite serious
because, by a permutation matrix, the root system is changed to
¥ ={(1,2)}, and then the criterion (4.2) applies; the statement of the con-
jecture is not touched by a permutation. For serious examples see (4.3).

One might ask whether 4Y could be finitely generated without being
generated by the ¥-minors; for a possible example see (4.3), Example 7.
I can show that 4Y, if finitely generated, must be an integral extension of
the algebra R generated by the ¥-minors. Since I have no use for this, I
omit the proof. Note that AY and R have the same quotient field

[11, (2.6)].
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Likewise one can consider more general regular subgroups G of GL,.
The questions

(i) TIs A€ finitely generated?
(ii)) Is A“ generated by the invariant minors?
(ili) Is A° spanned by the invariant standard bitableaux?

are easily reduced to the corresponding questions for the unipotent radicals
R, (G). Therefore it is no loss to confine to the unipotent case.

3. ORDERED SETS WITH THE STANDARDIZING OR DOMINANCE PROPERTY

In this section I consider the properties of ordered sets that are relevant
for canonical unipotent subgroups and their invariants.

(3.1) Let £ be a finite ordered set. We may describe it by an orien-
ted graph:

(0, 7)€ Q?%is an arrow: <
o > 1, and o, T are (immediate) neighbors.

The resulting graph contains no cycle all of whose arrows,except possibly
one, are directed in one direction (“quasi-cycle”). Vice versa the graph
determines the ordering:

g=1 < There is a way (maybe trivial) from ¢ to 7.

This correspondence between finite ordered sets (up to isomorphism)
and finite directed graphs without quasi-cycles is bijective.
If 0 € Q, the set

Q,={1el|t<0}

is called the segment below o.
An admissible enumeration of Q is an antitone bijection

Q- {1,.,n}, 0,4 I,

or, in other words, a total ordering refining the reverse of the given
ordering. (g, is the greatest element of Q.)

(3.2) Let 2 be an ordered set of n elements with an admissible
enumeration. Let ¥ be the induced reverse strict ordering of {1,..,n},

Y= {(i,j)e {l,..n}’6,>0,}.
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A W¥-tableau is a tableau with values in {1,..,n} and strictly increasing
rows such that the following holds: If a row contains the entry i, then it
contains all j with (i, j) € ¥. (Accordingly the Y-tableaux are the left sides
of the ¥-bitableaux as defined in (2.5).)

For a finite ordered set £2 with an admissible enumeration the following
properties are relevant:

(S) If T is a W-tableau, then the standardized tableau 7° is again a
Y-tableau.

(D) If Tis a ¥Y-tableau and S is a standard tableau dominated by,
and of the same content as, T, then S 1s a ¥-tableau.
Here again T° results from T by ordering the columns. The dominance
relation of tableaux, written =3, is the column dominance relation, com-
pare (2.1). Since T has increasing rows, S <2 7T is equivalent with S <=1 T°.

DEFINITION. A finite ordered set has the standardizing property (or the
dominance property), if it has an admissible enumeration with the property
(S) (or (D)).

Remarks. (1) 1t suffices to test (S) for ¥-tableaux with two rows: The
rearrangement of 7 yielding 7° decomposes into single steps involving only
two rows. Since each standard tableau S <1 T of the same content is also
got by rearrangement, a similar remark applies to (D).

(2) In [11] I considered the following property:

(A) If Tis a Y-bitableau, then T is a linear combination of standard
Y-bitableaux.
Obviously (D)= (A)=(S). In (4.1) I shall show that, in fact, (A) and
(S) are equivalent, whereas (D) is strictly stronger.
Since, given a finite ordered set, there may be a lot of admissible
enumerations, I shall give criteria that depend only on the ordering and
yield almost canonical enumerations, see Theorems (3.8) and (3.9).

(3.3) LEMMA. Let Q be a finite ordered set, admissibly enumerated, and
let 2, be the segment below a;. Assume (S) holds. Then:

(1) o00Q,2---2Q,=0.
(i) Ifo,,0,eQ2—Q, where i<p<gq<n, then

QN {0,410, S84

(iii) Assume moreover that (D) holds, and ¢ ,€ Q2 — Q,; where i <p <n.
Then

Qn{0,,1,50,} SQ, .
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Proof. (1) Assume there is an i with Q, 2 Q,,,. Let 7,,€Q,, , — Q,,
in particular i+2<m<n. Then necessarily o,,,¢£,, since otherwise
6,>0;,,>a,. Therefore

T_<i+l i+2 - m-—1 m - n—1 n
i i+2 - m—-1 m+1 -- n
1s a P-tableau. The standardized tableau,
s ([ F i+2 0 om—1 m -+ n—1 n
i+l P42 o o m—1 m+1 - n ’

however, is not a ¥-tableau, since it has i+ 1 in its second row but not m.

(m) Leti, < --- <i, be the numbers of the elements of Q,. By (i) the
numbers of the elements of Q,, , are contained among these. Without loss
of generality I can assume p and ¢ minimum and ¢ <i,.

If the assertion is wrong, I can find an i,>g¢, t<u, with g, € Q,—Q, |.
Let i, =i, and let r and s be the indices such that i, <p<i, ,, i;<qg<i,,,
(where 0 <r<s<t<u). The ¥-tableau

_( l Ly »°° L, 1, Leyvy 777 U ls+l ls+2 L lr+l lu)
i+l iy by plyyy o dy g gy iy ey

(suitable interpreted when r=0, or r=1, or r=s, or t=s+1, or t=u)
yields the standardized tableau

T < l Ly Lyl 4 ls+l”'ll—]lt+l”.lu)

l+ll2”- L Plopr  "hilsynleqn L g7y

that is not a ¥W-tableau: It has i in its first row but not i,.

(ii1) Assume p minimum, i,<p<i,, ,, and 0,€Q,—Q,;,, where
s+ 1<t <u. Then the ¥-tableau

T=< i l:l“'l:xflis l:s+l'”l:tfl .lt “.lu.——l lu)
S8 UN PRERY NN 2 NARLLY MUY PRPEELN §
dominates the standard tableau

_( R TS N 2N PUEEE L A T A iu)
R Y PRANS N by I
that is not a ¥-tableau: It has i in its first row but not i,. ||

(3.4) Remarks. (1) The following statements are equivalent:

(a) There is an admissible enumeration such that the condition (i) of
Lemma (3.3) holds.
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(b) Any two segments are comparable.

(c) For any two arrows of the associated graph there must be a
(directed) way from at least one of the initial points to the other final point.
(In particular the graph must be connected up to some isolated points.)

Proof. (a)=(c) If (c) is not fulfilled, then any admissible enumeration
obviously violates (a).

(c)=(b) If 6,,0,€Q, 0,62,-Q,, 6,eQ,—Q,, then there must be
neighbors g, of ¢, and o, of ¢, such that 0,¢ 2, and ¢,¢ Q,.

(b)=>(a) Obvious.

(2) Looking at the graph one can rephrase statements (ii) and (iii) of
Lemma (3.3): If there is no way from o, to two vertices with higher number
(or to one vertex with higher number), then g,, , is connected with the
complete remainder of the segment below o,.

(3) More generally one can define the bypass index of a finite ordered
set with admissible enumeration to be the least number b such that one
has: If 0, ,..,0,,0,e 2 —Q, where i<i, < --- <i,<p<n, then

QN{0,, 1,0, SQ,, .

Accordingly b is the maximum number of vertices of higher rank that can
be bypassed without consequences. Then (ii) means: (S) implies b= 1, and
(i11): (D) implies b =0.

(3.5) ExampLES. (1) The statements (a), (b), and (c) of Remark 1 in

(3.4) do not hold, but the graph is connected:

2 5 1 4 3
L 4 >@¢ [ @ ]

Q,=1{0s5}, Qy=1{0,}.
(2) The statements (a), (b), and (c) hold:

3
[

-9

Q,=0,={0;,0,}, 23=0Q,=.
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(3) The statement (i) of Lemma (3.3) holds but not (ii):

0,,0,¢02,,05€02,—0Q,.
(4) The statements (i), (ii), and (ii1) hold:

[ ]

A
oo
4

o

Q,={0,,05}, 2,=02,=Q,=1{05},Q2;=. For another example see
Example 2.

(5) The statements (i) and (ii) hold but (iii) does not:

3 1 4 2
*——@ > @+ ®

0,¢Q,,Q2,n{0;,0,}=1{03,04},2,={0,}.

With the indicated enumerations, (S) does not hold for Examples 1 and
3, and (D) does not hold for Example 5. From (3.8) and (3.9) it will follow
that (D) holds for Examples 2 and 4, and (S) holds for Example 5.

(3.6) The finite ordered set £ carries a natural equivalence
relation, called segment equivalence:

o~T: = Q. =0Q..

The segment (equivalence) classes are the fibers of the map Q2 — P(£2),
o— Q.
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If any two segments are comparable, the segment classes M ,..., M, may
be enumerated such that

ceM,, TeM,  =>Q . cQ,.

If Q2 has the standardizing property, then for any admissible enumeration
with (S) all elements of M, must have smaller numbers than all elements of
M, +1°

PROPOSITION. Let Q be a finite ordered set with the standardizing
property. Then the segment class decomposition

Q=M,v UM,
has the properties:
(i) Each g€ M, has the same segment Q, below it, and
Q<M. v UM,
Q2oQ,0-->2Q,=¢.

(i1)  For all i,j with 1 <i<j<r we have: If more than one element of
M, v - UM; are absent from Q,, then the elements of M, have no
neighbors in M . M

J4 Loeees re

Proof. (i) Obvious by statement (i) of Lemma (3.3) and by the remark
above.

(i1) Choose an admissible enumeration with (S). Let 6,,0,€
(M, v - UM;)—Q, where p and ¢ are minimum. Apply the statement
(i1) of Lemma (3.3) to the last element of M, (instead of the o, in the
lemma). It produces

Qin(M; v UM)SQ,n {0, 1,.,0,}SQ,,,.

IfQ2,nM,, #, thenteQ,n M, _, ranges between each element of M,
and each element of Q. " (M, U - UM,).

If Q,nM, =, we have |[M,, | =1; otherwise the statement (ii) of
the lemma would produce the contradiction ,=€,.,. Therefore
M, ,={0,}, and, without loss of generality, c,€ M, (diminish j, if
necessary). Since Q;#€,,,, necessarily o,,,,.,0, ¢2,,, (and
g#p+1). Hence o,¢Q,,, where p<t<gq (and ¢=p+2). The lemma
applied to o, yields

Qin(M; 0 UM)=Q, n(M; ;0 UM)SQ,, .
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Therefore 0,,,€Q2,n M, , ranges between each element of M, and each
element of Q," (M, ;U - UM,). |

(3.7) If the segment class decomposition

Q=M,u - UM,

has the properties (1) and (ii) of Proposition (3.6), it is called good. A
necessary condition for this is that any two segments are comparable.

ExXAMPLES (numbered as in (3.5)). (1) The decomposition is not good
because there are incomparable segments.

(2) Good.

(3) Not good; the segment classes are M, = {o,}, M,={0,, 05},
M;= {0405}

(4) Good.

(5) Good.

Now let 2 have all its segments comparable. Then it has a distinguished
enumeration that is carried out as follows:

(1) The elements of M, obtain the numbers 1,..., |M |, the elements
of M, the numbers |M,|+1,..., [M,| + |M,|, and so on.

(2) Each of the sets M, is filtered:

Mi=M2M,=2"2M,, 2M,={,

where M, := QA M, for 1<i<j—1. In particular the segment below
cgeM;is

Q. =Q.=M

a J J+ L

U uM

rje

Within M, the elements of M, , |, obtain the smallest numbers (in arbitrary
order), then the remaining elements of M, , obtain the next smallest
numbers, and so on.

Each distinguished enumeration is admissible.
ExamPLEs. The indicated enumerations of the Examples 2, 3, 4 are dis-

tinguished, but that of Example 5 is not. A distinguished enumeration of
Example 5 is
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(3.8) THEOREM. Let Q be a finite ordered set. Then the following
statements are equivalent:

(1) Q has the standardizing property.

(i) The segment class decomposition of £ is good.
Proof. (i)=>(ii) is Proposition (3.6).

(ii)= (i) 1 supply Q with a distinguished enumeration and claim that
(S) is true.

For the proof let T be a ¥-tableau with two rows. Denote the entries in
the first column by p and ¢ where 0,e M, 0,e M,, i<j, p<gq. (It is not
specified whether p or ¢ is in the first row.)

Case 1. j=i. The numbers of all elements of 2, appear in each row of
T and in each row of T* Because only numbers of elements of
M,u --- UM, can occur altogether, each entry has its obligatory com-
panions in Q;, and these are in the same row of 7°.

Case 2. j=i+ 1. All entries of T belonging to M;u -~ UM, , must
be in the first row of T*. In particular this row begins with p. If p retains its
obligatory companions, so do all entries belonging to M,u --- UM, .
On the other hand all entries belonging to M, U --- U M, have their com-
panions in 2,<£,, and these occur in each row of T°. Therefore I only
have to show: T® has each number belonging to , " (M;uU --- UM,) in its
first row.

This is almost obvious for the numbers belonging to Q."M;=M,:
Assume that the elements of M, have the numbers s+ 1,.., u (where
s+ 1<g<u), in particular that the elements of M, have the numbers
s+ 1,.., t (where 1 <u). Then the entries belonging to M, in the p-row of T
are over (or under) greater entries in the g-row. Therefore they are in the
first row of T°.

Finally assume that the number 7 of an element of Q,n M,= M, with
[=j+ 1, is missing in the first row of 7°. This number ¢ is in the p-row of T
and in a column with number at least

L+1Q0(M; 0 - UM, )| +1—s,

where s=|M,u - UM, ,|>gq. In the same column, and in the g-row,
there must appear an entry u < ¢, and the number of this column is at most
1 + u — g. Comparing these two estimates of the column number I get

Qin(M; 0 - UM, )| +t—-u<ss—gq,
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where, of course,
s—q<|M,u - UM, |1
Because r—u>1, I have

I-Q/ iNM; o UM, D) HISIQn(M 0 UM, )+t —u
S.M/U'UM[71|—1 (*)

Therefore at least two elements of M, --- UM, | are missing in Q, .
Since the decomposition of  is good, ¢, is not a neighbor of the elements
of M, . Since ¢ is missing in the g-row of 7, I have g,¢Q,, and accor-
dingly o,¢ 2, ,. On the left and right sides of () I can replace the index j
by any index h with i+ 1 <A<, because s—q remains between them.
Hence o, i1s not a neighbor of the elements of M, ,. Therefore
0,2, ,,.,0,¢Q,, acontradiction. |

(3.9) With regard to the dominance property I can state a similar
theorem. If the segment class decomposition has the properties (i) and (ii)
of Proposition (3.6), but with “more than one” replaced by “at least one,”
it 1s called very good.

THEOREM. Letr Q be a finite ordered set. Then the following statements
are equivalent:

(1) £ has the dominance property.

(1)  The segment class decomposition of Q is very good.

This theorem is not needed in the sequel. The proof is similar to that of
Theorem (3.8) and is left to the reader.

COROLLARY. If Q has the standardizing (or dominance) property, then
(S) (or (D)) holds for each distinguished enumeration.

ExaMpPLES. Compare the remark at the end of (3.5).

4. STRAIGHTENING LAWS FOR ALGEBRAS OF INVARIANTS

(4.1) PROPOSITION. Let 2 be a finite ordered set with the standardizing
property, supplied with an admissible enumeration such that (S) holds. Then
each ¥-bitableau is a linear combination of standard ¥-bitableaux.
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Proof. 1 have to straighten a ¥-bitableau with two rows,

449, " 4y

(maybe m=>1), where p<gq, o0,e M, o,eM;, i<j. The segment class
decomposition Q=M, U --- UM, is good. Let S be one of the occuring
bitableaux. Then S has all its (left-hand) entries <gq in its first row, and its
second row begins with an entry >g¢. Accordingly I have only to show that
S contains each number belonging to 2, (M; U --- UM,) in its first row,
compare the proof of Theorem (3.8).

If i =, this is obvious because the numbers belonging to €2, appear twice.
Now let j>i+ 1. Let h:=|M,u --- UM, ||. Then p<h<gq.

Case 1. At most one element of MU --- UM, with number < the
maximum number of 2, is missing in ;. Let s be the maximum index with
p,<h+s+ 1. In particular all numbers belonging to Q, are <p,. For
1 <t<min{s,m} I have

p.<h+t+1<qg+t+1<q,+1,

hence p,<gq,. Therefore the pith partial tableau of T is standard. By
Proposition (2.2) no number belonging to 2, can emigrate to the second
row of S.

Case 2. At least two elements of M;u --- UM, with numbers < the
maximum number of Q, are missing in Q;. Denote the smallest two of these
numbers by u, v with u <v. Then ¢, 0, are missing in Q, ,,.., Q, ,, too.
Let s be the index with p,<v<p,, . Then, as in Case 1, I have p,<gq, for
1 <t<min{s, m}. Again the pth partial tableau of T is standard, and no
number <wv belonging to 2, can emigrate to the second row of S. What
about numbers >v belonging to 22,? Because of property (S) and Lemma
(3.3) these belong to 2, ,..., 2,. Therefore they appear in each row of 7,
hence of S. |}

(4.2) Now let U be a canonical unipotent subgroup of GL, with
root system ¥. Let U act on the algebra A = A, as in (2.4). Let 2 be an »-
element ordered set inducing the ordering ¥ of {1..., n} by an appropriate
admissible enumeration. Call U good, if Q has the standardizing property
and the admissible enumeration corresponding to ¥ has the property (S).
This use of the term “good” does not exactly correspond to that in
[11, p. 368 ], where moreover the formulation of Lemma (4.2) was not con-
sistent. All the examples of [11, (3.4) and (3.7), Bemerkung 2] are good in
the new sense.
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THEOREM. Let U be a canonical unipotent subgroup of GL, with root
system ¥. Then the following statements are equivalent:

(1)  The subgroup U is good.

(ii) The algebra AY of invariants is spanned by the standard
Y-bitableaux (for every N).

Proof. (ii)= (i) By Remark 2 in (3.2).

(1)=(i1) Let R be the algebra generated by the ¥-minors. Proposition
(4.1) tells me that R is spanned by the standard Y-bitableaux. Therefore I
have to show that R=A4Y.

Let £ be a corresponding ordered set, supplied with an enumeration
with property (S) that induces ¥. Let Q =M, U -+ U M, be the segment
class decomposition. I reorder £ in a coarser way by forgetting all the
relations o <t where 6 € M, _ . This new ordered set Q' corresponds to a
canonical unipotent subgroup U’ that is normal in U and has the root
system

v={(i,))ePlo,¢ M, ).

By Theorem (3.8) Q' has the standardizing property. (But note that the
given enumeration need not have property (S) with respect to €', even if it
is distinguished with respect to ©.) By induction over r, beginning at r =1,
I can assume that 4Y is generated by the ¥’-minors: Conjugation by a
suitable permutation matrix transforms U’ into a good subgroup U” with
root system ¥”, and AV is spanned by the standard ¥”-bitableaux. By
[11, (2.6), Bemerkung] I got A[1/d]Y=R[1/d] withd=(i, i, |i,"*"i,),
where i|,..,, i, are the numbers corresponding to the last nontrivial segment
@, ;. Here I assumed that N> n; because the right-hand entries of the
bitableau d are unessential,the assumption N > m would suffice.

To complete the proof I only have to get rid of the denominator d, that
is, I have to show the property (C,) of [11,(3.3)]: If T is a standard
bitableau, and the standardization S of the bitableau 7d is a ¥-bitableau,
then 7 is a ¥-bitableau.

~(r)
T

To this end let
be decomposed into a product of two standard bitableaux where 7" con-
sists of the rows of T that contain entries belonging to M, U - UM, _, on
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their left sides, and T” consists of the rows containing entries only from M,
on the left. If (7)) is standard, then the standardization of

T/
Td=\| d
T//

affects the lower part (%) only. Therefore, in this case, S is a ¥-bitableau if
and only if 7" is if and only if T is.

Now assume that (%) is not standard. Let (h,--- h;| -+ ) be the last row
of T". Then hyeM,u -~ UM, _,, hence h, <i,. After standardizing, h,
must have at least the elements i,,...,, i,,€ 2, , in its row. But i; can appear
there only if it was there in T already. Therefore h, <i, <i,, and similarly
h,<i, for 1 <s<q:=min{l,m}. Hence h, can’t get i, and S is not a
Y-bitableau. |

Remark. 1t suffices to have (ii) for only one fixed value N>n. Even
N = n — 2 suffices.

(4.3) ExampLEs. For the Example 1 of (3.5) the algebra of invariants is
not spanned by the standard Y-bitableaux, whatever admissible
enumeration is chosen. I don’t even know whether this algebra is finitely
generated, compare [11, (4.3)]. The only other example with n<5 where
the finite generation of the invariants is unknown is obtained by reversing
the four arrows of Example 1.

Examples 2, 4, and 5 of (3.5) give good groups.

Example 3 gives no good group with any enumeration. But the algebra
of invariants is generated by the invariant minors for the following reason:
Reversing the arrows, that is, applying the transposition automorphism of
GL,, gives a good group when the enumeration is properly chosen.

(6) For n<4 there is only one example,

o—® o —0,

with incomparable segments. However in this case the algebra of invariants
is generated by the invariant minors, apply [11, (4.2)]. All the other graphs
with n <4 give good groups, at least with a proper enumeration.

(7) Another example with incomparable segments is

00— 0,

look at the first and last arrows. In this case the algebra of invariants is
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finitely generated by [11, (4.3)]. (The base ring extension k < the algebraic
closure of the quotient field of k doesn’t matter.) But I do not know
whether the invariant minors are a system of generators.
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