
1.4 Suitable Parameters for RSA

Proposition 3 Let n � 3 be an integer. The following statements are equiv-

alent:

(i) n is squarefree.

(ii) There exists an r � 2 with ar ⌘ a (mod n) for all a 2 Z.

(iii) [RSA equation] For every d 2 N and e 2 N with de ⌘ 1 (mod �(n))
we have ade ⌘ a (mod n) for all a 2 Z.

(iv) For each k 2 N we have ak·�(n)+1
⌘ a (mod n) for all a 2 Z.

Proof. “(iv) =) (iii)”: Since de ⌘ 1 (mod �(n)), we have de = k · �(n) + 1
for some k. Hence ade ⌘ a (mod n) for all a 2 Z.

“(iii) =) (ii)”: Since n � 3, we have �(n) � 2. Choosing an arbi-
trary d with gcd(d,�(n)) = 1 and a corresponding e by congruence division
mod�(n) we get (ii) with r = de.

“(ii) =) (i)”: Assume there is a prime p with p2|n. Then by (ii) we
have pr ⌘ p (mod p2). But because of r � 2 we have pr ⌘ 0 (mod p2),
contradiction.

“(i) =) (iv)”: By the chinese remainder theorem we only have to show
that ak·�(n)+1

⌘ a (mod p) for all prime divisors p|n.
Case 1 : p|a. Then a ⌘ 0 ⌘ ak·�(n)+1 (mod p).
Case 2 : p - a. Because of p � 1|�(n), we have a�(n) ⌘ 1 (mod p), hence

ak·�(n)+1
⌘ a · (a�(n))k ⌘ a (mod p). 3

Corollary 1 The RSA procedures work for a module n if and only if n is

squarefree.

To find suitable exponents d and e we have to know �(n) or, better yet
(and necessarily as it will turn out) the prime decomposition of n. Then the
procedure of key generation suggests itself:

1. Choose di↵erent primes p1, . . . , pr and form the module n := p1 · · · pr.

2. Compute �(n) = lcm(p1�1, . . . , pr�1) using the Euclidean algorithm.

3. Choose the public exponent e 2 N2, coprime with �(n).

4. Compute the private exponent d with de ⌘ 1 (mod �(n)) by congru-
ence division.

Then take the pair (n, e) as public key, and the exponent d as private key.

Corollary 2 Who knows the prime decomposition of n can compute the

private key d from the public key (n, e).

9



Practical Considerations

1. The usual choice is r = 2. Then the module has only two prime factors
p and q that, as a compensation, are very large. Factoring this kind
of integers n = pq seems especially hard. It is crucial that the primes
are chosen completely at random. Then an attacker has no hint for a
guess.

2. For e we may choose a prime with e - �(n), or a “small” integer say
e = 3—more on the dangers of this choice later. A common standard
choice is the prime e = 216 + 1, provided e - �(n). The binary rep-
resentation of this integer contains only two 1’s, making the binary
power algorithm for enryption very fast. (For digital signature this
is the verification of the signature.) However this choice of e doesn’t
make decryption (or generating a digital signature) more e�cient.

3. After generating the keys we don’t need p, q, and �(n) anymore, so we
could destroy them.

However: Since d is a “random” integer in the interval [1 . . . n] taking
d-th powers is costly even with the binary power algorithm. It becomes
somewhat faster when the owner of the private key computes cd mod p
and mod q—using integers of about half the size—and then composes
the result mod n with the chinese remainder theorem. This procedure
yields a small advantage in speed for decryption (or generating a digital
signature).

4. Instead of �(n) we could use its multiple '(n) = (p � 1)(q � 1) for
calculating the exponent.

Advantage: We save (one) lcm computation.

Drawback: In general we get a larger exponent d, slowing down each
single decryption.

5. Notwithstanding Corollary 1 the RSA procedure works in a certain
sense even if the module n is not squarefree. Decryption using the chi-
nese remainder theorem is slightly more complex, involving an addi-
tional “Hensel lift.” However decryption breaks down for plaintexts
a that are multiples of a prime p with p2|n. Note that this e↵ect is
compatible with Corollary 1!

The danger of hitting a plaintext divided by a multiple prime factor
of n by chance is negligeable but grows with the number of prime
factors. Even for a squarefree module n a plaintext divided by a prime
factor would immediately yield a factorization of n, and hence reveal
the private key.

10



Attention

The cryptanalytic approaches of the following chapter result in a set of side
conditions that should be strictly respected when generating RSA keys.

Exercises

1. Let p and q be two di↵erent odd primes, and n = p2q. Characterize the
plaintexts a 2 Z/nZ that satisfy the RSA equation ade ⌘ a (mod n).
Generalize the result to arbitrary n.

2. Show that an integer d 2 N is coprime with �(n) if and only if d is
coprime with '(n).

11


