
2.8 Small Exponents

Question: Is RSA in danger if someone chooses a small public exponent e?

The exponent e = 1 is nonsensical since it leaves plaintexts unencrypted.
The exponent e = 2 doesn’t work for RSA since it is even and thus not

coprime with �(n). Nevertheless the related Rabin cipher uses e = 2. Here
the receiver of the message must be able to take square roots mod n, and
this works since he knows the prime factors of n (see later). (By the way
he must also be able to recognize the true plaintext among several di↵erent
square roots.)

Same Message for Several Receivers

For RSA the smallest potentially suited exponent is e = 3. However it en-
ables an attack that applies as soon as someone sends the same message a
to three di↵erent receivers A, B, and C. Let their public keys be (nA, 3),
(nB, 3), and (nC, 3). Assume the modules nA, nB, and nC are pairwise co-
prime, otherwise the attacker factorizes at least two of them and reads a.
Then (with some luck) she intercepts three ciphertexts

cA = a3 mod nA, cB = a3 mod nB, cC = a3 mod nC,

with 0  a < nA, nB, nC, thus a3 < nAnBnC. Using the chinese remainder
algorithm she constructs an integer c̃ 2 Z with

0  c̃ < nAnBnC

such that
c̃ ⌘ cX mod nX for X = A,B,C.

By uniqueness c̃ = a3 in Z. So she computes a = 3
p
c̃ by taking the integer

root in Z. This is an e�cient procedure. (In this situation she doesn’t succeed
with computing the private exponents.)

This attack obviously generalizes to other “small” shared public expo-
nents e: If the same message is sent to e di↵erent people, then everybody
can read it. This attack is not completely unrealistic: Think for example of
fixed “protocol information” at the beginning of a larger message. Even in
classical cryptography an important maxim was: Never encrypt the same

plaintext with di↵erent keys.

In practice the exponent e = 216+1 = 65537 is considered as su�ciently
secure for “normal” situations.

Stereotypical Message Parts

Consider the key parameters (n, e, d). Imagine an attack with known plain-
text that reads:

30



Der heutige Tagesschluessel ist:********

(“The master key for today is: . . . ”, example by Julia Dietrichs) with known
(stereotypical) 32 byte part “Der heutige Tagesschluessel ist:”, and
unknown 8 byte part “********”.

This message is encoded by the 8-bit character code ISO-8859-1 (used
for German texts) as a sequence of 40 bytes or 320 bits, and for encryption
by RSA interpreted as an integer a 2 [0 . . . n� 1] (assume n has more then
320 bits, and e = 3). Decompose a as a = b + x where b corresponds to
the known, and x, to the unknown part. Since the latter forms the end of
the message and consists of 64 bits we know x < 264. Encryption yields the
ciphertext

c = ae mod n = (b+ x)e mod n.

Hence the secret x is a root of the polynomial

(T + b)e � c 2 (Z/nZ)[T ].

At first sight this observation doesn’t seem alarming since we know of no
general e�cient algorithms that compute roots. However algorithms for cer-
tain special cases exist, for instance:

Coppersmith’s algorithm
Let f 2 (Z/nZ)[T ] be a polynomial of degree r. The algorithm
finds all roots x of f with 0  x < r

p
n (or proves that there are

none).
The execution time is polynomial in log n and r.
(The algorithm uses the “LLL algorithm” for reduction of lattice
bases.)

In our example n has at least 321 bits, and e = 3. Thus the algorithm
outputs x since x3 < 2192 < 2320 < n.

This is only a simple example of a larger class of attacks for special
situations that amount to a computation of roots mod n.

Exercise. Modify the attack for a situation where the unknown part of
the plaintaxt consists of some contiguous letters surrounded by known
plaintext sequences.

31


