2.8 Small Exponents
Question: Is RSA in danger if someone chooses a small public exponent e?

The exponent e = 1 is nonsensical since it leaves plaintexts unencrypted.

The exponent e = 2 doesn’t work for RSA since it is even and thus not
coprime with A(n). Nevertheless the related RABIN cipher uses e = 2. Here
the receiver of the message must be able to take square roots modn, and
this works since he knows the prime factors of n (see later). (By the way
he must also be able to recognize the true plaintext among several different
square roots.)

Same Message for Several Receivers

For RSA the smallest potentially suited exponent is e = 3. However it en-
ables an attack that applies as soon as someone sends the same message a
to three different receivers A, B, and C. Let their public keys be (na,3),
(nB,3), and (nc,3). Assume the modules na, ng, and nc are pairwise co-
prime, otherwise the attacker factorizes at least two of them and reads a.
Then (with some luck) she intercepts three ciphertexts

ca = a® mod nA, Cg= a® mod ng, c¢c= a® mod ng,
with 0 < a < na,ng,nc, thus a® < nangnc. Using the chinese remainder
algorithm she constructs an integer ¢ € Z with

0 < ¢ < nanpng

such that
c=cx modnx for X=A,6B,C.

By uniqueness ¢ = a® in Z. So she computes a = V/¢ by taking the integer
root in Z. This is an efficient procedure. (In this situation she doesn’t succeed
with computing the private exponents.)

This attack obviously generalizes to other “small” shared public expo-
nents e: If the same message is sent to e different people, then everybody
can read it. This attack is not completely unrealistic: Think for example of
fixed “protocol information” at the beginning of a larger message. Even in
classical cryptography an important maxim was: Never encrypt the same
plaintext with different keys.

In practice the exponent e = 21641 = 65537 is considered as sufficiently
secure for “normal” situations.

Stereotypical Message Parts

Consider the key parameters (n, e, d). Imagine an attack with known plain-
text that reads:

30



Der heutige Tagesschluessel ist:*kkxkkkkxk

(“The master key for today is: ...”, example by Julia Dietrichs) with known
(stereotypical) 32 byte part “Der heutige Tagesschluessel ist:”, and
unknown 8 byte part “kkkkkkxx”

This message is encoded by the 8-bit character code ISO-8859-1 (used
for German texts) as a sequence of 40 bytes or 320 bits, and for encryption
by RSA interpreted as an integer a € [0...n — 1] (assume n has more then
320 bits, and e = 3). Decompose a as a = b+ x where b corresponds to
the known, and x, to the unknown part. Since the latter forms the end of
the message and consists of 64 bits we know x < 264, Encryption yields the
ciphertext

¢ =a’modn = (b+ z)° mod n.

Hence the secret x is a root of the polynomial
(T +0b)¢ —ce (Z/nZ)[T).

At first sight this observation doesn’t seem alarming since we know of no
general efficient algorithms that compute roots. However algorithms for cer-
tain special cases exist, for instance:

COPPERSMITH’s algorithm

Let f € (Z/nZ)[T] be a polynomial of degree r. The algorithm
finds all roots x of f with 0 < z < {/n (or proves that there are
none).

The execution time is polynomial in logn and 7.

(The algorithm uses the “LLL algorithm” for reduction of lattice
bases.)

In our example n has at least 321 bits, and e = 3. Thus the algorithm
outputs z since 23 < 2192 < 2320 < p,

This is only a simple example of a larger class of attacks for special
situations that amount to a computation of roots mod n.

Exercise. Modify the attack for a situation where the unknown part of
the plaintaxt consists of some contiguous letters surrounded by known
plaintext sequences.

31



