
3.6 RSA and Pseudoprimes

To use RSA we need primes. The probabilistic Rabin primality test solves
the problem of finding them in a highly e�cient, but not perfectly satisfying
way: We could catch a “wrong” prime. What could happen in this case?

For an analysis of the situation let n = pq be a putative RSA module
where p and q are not necessarily primes, but at least coprime. For the
construction of the exponents d, e with

de ⌘ 1 (mod �(n)) (or (mod '(n)))

we use the possibly wrong values

'̃(n) := (p� 1)(q � 1), �̃(n) := kgV(p� 1, q � 1)

instead of the true values '(n) and �(n) of the Euler and Carmichael
functions.

How do the RSA algorithms work with the “false” values? Let a 2 Z/nZ
be a plaintext. As usual the case gcd(a, n) > 1 leads to a decomposition
of the module, we ignore it because of its extremely low probability. So we
assume gcd(a, n) = 1, and ask whether

ade�1 ?
⌘ 1 (mod n)

holds. By the chinese remainder theorem this holds if and only if

ade�1
⌘ 1 (mod p) and (mod q) .

A su�cient condition is

ap�1
⌘ 1 (mod p) and aq�1

⌘ 1 (mod q) .

Thus a message a might be incorrectly decrypted only if p or q is not a
pseudoprime to base a. Hence:

• If instead of a prime factor p we use a Carmichael number, then
RSA works correctly despite the “false” parameters, at least if a is
coprime with n, though the (extremely low) probability of accidentally
factorizing the module n by catching an inept plaintext a is slightly
enlarged.

• Otherwise p is not a prime nor a Carmichael number. Then there is
a small chance that a message cannot be correctly decrypted.

For this reason many implementations of RSA execute a few trial encryp-
tions and decryptions after generating a key pair relying on the probabilistic
Rabin test. But the e↵ect of this additional step simply boils down to a few
additional pseudoprime tests. If something goes wrong, the module is re-
jected.

It is unknown whether this case yet occured in this universe.

47


