
Chapter 5

Hard Number Theoretic
Problems

The following table gives an overview over cryptologically relevant num-
ber theoretic computational problems. “E�cient” means “computable with
polynomial cost”, “ERH” means “if the extended Riemann hypothesis
holds”, “prob.” means “by a probabilistic algorithm”.

Computational problem e�cient? treated in

Primality test yes 3.1–3.8

For a prime number p
Finding a primitive element yes (ERH or prob.) A.2, A.9
Finding a quadratic nonresidue yes (ERH or prob.) A.8
Quadratic residuosity yes A.6
Taking a square root yes (ERH or prob.) follows in 5.3
Discrete logarithm ? (probably no) 4.1, 4.6

For a composite integer n
Factoring ? (probably no) 2.2, 2.4
RSA inversion (e-th root) ? (probably no) 2.2
Computation of Euler function ? (probably no) 2.2
Computation of Carmichael f. ? (probably no) 2.2
Finding a primitive element ? (probably no) A.4
Quadratic residuosity ? (probably no) A.11
Taking a square root ? (probably no) follows in 5.5
Discrete logarithm ? (probably no) follows in 5.1

Figure 5.1 shows the connection between computational problems for
a composite integer n. An arrow from A to B indicates that problem B
reduces to Problem A by an e�cient (maybe probabilistic) algorithm. For an
unidirectional arrow the reverse direction is unknown. Reductions indicated
by red arrows will be proved in this chapter (sometimes only in the case

67

where n is a product of two primes). [The task denoted by “Pol. fact.” means
factoring polynomials in one variable over the residue class ring Z/nZ. We
wont treat it in these lecture notes.]

Pol. fact.

?

Discrete log.

?
Factoring

?
RSA inversion

-�Square root

?
Quadratic res.

�
�
�
�
�✓�

�
�
�

�

Carmichael f.

-� Euler f.

@
@
@
@
@R
Find a primit. el.

Figure 5.1: Connection between computational problems for a composite
module

68

5.1 Discrete Logarithm and Factorization

Let a 2 Mn, ord a = s, and consider the exponential function

expa : Z �! Mn

The problem of computing discrete logarithms mod n is to find an algorithm
that for each y 2 Mn

• outputs “no” if y 62 hai,

• else outputs an r 2 Z with 0  r < s and y = ar mod n.

Proposition 15 (E. Bach) Let n = pq with di↵erent primes p, q � 3.
Then factoring n admits a probabilistic e�cient reduction to the computation

of discrete logarithms mod n.

Proof. We have '(n) = (p�1)(q�1). For a randomly chosen x 2 Mn always
x'(n) ⌘ 1 (mod n). Let y := xn mod n, thus

y ⌘ xn ⌘ xn�'(n) = xpq�(p�1)(q�1) = xp+q�1 (mod n).

The discrete logarithm yields an r with 0  r < ordx  �(n) and
y = xr mod n. Hence

xr�(p+q�1)
⌘ 1 (mod n), ordx | r � (p+ q � 1).

Since |r� (p+ q� 1)| < �(n) the probability is high that r = p+ q� 1. This
happens for example if ordx = �(n). Otherwise choose another x.

From the two equations

p+ q = r + 1

p · q = n

we easily compute the factors p and q. 3

69

5.2 Square Roots and Factorization

Proposition 16 (M. Rabin) Let n = pq with di↵erent primes p, q � 3.
Then factoring n admits a probabilistic e�cient reduction to taking square

roots mod n.

Proof. Z/nZ contains four di↵erent roots of unity, hence also four di↵erent
square roots of each square in Mn.

For a random choice of x 2 Mn the square root algorithm provides a
root y 2 Mn of x2, thus

y2 ⌘ x2 (mod n).

The probability that y 6⌘ ±x (mod n) is 1
2 . Since

n | (x2 � y2) = (x+ y)(x� y), n 6 | (x± y),

gcd(n, x+ y) is a proper divisor of n. 3

Therefore an attacker who knows how to take square roots mod n also
can factorize n.

The reverse direction follows in Section 5.5.

70

5.3 Square Roots in Finite Prime Fields

In many cases taking square roots is a trivial task as the following simple
consideration shows:

Lemma 9 Let G be a finite group of odd order m. Then for each a 2 G

there is exactly one x 2 G with x2 = a, and it is given by x = a
m+1

2 .

Proof. Since am = 1 we have x2 = am+1 = a. We conclude that the squaring
map x 7! x2 is surjective, hence a bijection G �! G. 3

We search methods for taking square roots in a finite prime field Fp

as e�ciently as possible. The case p ⌘ 3 (mod 4) is extremely simple by
the foregoing consideration: If p = 4k + 3, then the group M2

p of quadratic

residues has odd order p�1
2 = 2k + 1. Hence for a quadratic residue z 2 M2

p

the unique square root is x = zk+1 mod p [Lagrange 1769]. The cost of
taking this square root is at most 2 · log2(p) congruence multiplications.

Examples

1. For p = 7 = 4 ·1+3 we have k+1 = 2. By A.8 2 is a quadratic residue.
A square root is 22 = 4. Check: 42 = 16 ⌘ 2.

2. For p = 23 = 4 · 5+3 we have k+1 = 6. By A.8 again 2 is a quadratic
residue. A square root is 26 = 64 ⌘ 18. Check: 182 ⌘ (�5)2 = 25 ⌘ 2.

Unfortunately for p ⌘ 1 (mod 4) we cannot hope for such a simple pro-
cedure. For example �1 is a quadratic residue, but no power of �1 can be
a square root of �1 since always [(�1)m]2 = (�1)2m = 1 6= �1.

Fortunately there are general procedures, for example one that is bap-
tized AMM after Adleman, Manders, and Miller, but was described al-
ready by Cipolla in 1903. It starts by decomposing p� 1 into p� 1 = 2e ·u
with odd u. Furthermore we choose (once and for all) an arbitrary quadratic
nonresidue b 2 F⇥

p �M2
p—this is the only nondeterministic step in the algo-

rithm, see Section A.8. (Assuming ERH the procedure is even deterministic,
as it is in the many cases where a quadratic nonresidue is known anyway.)

Now we consider a quadratic residue z 2 M2
p and want to find a

square root of it. Since z 2 M2
p, we have ord(z) | p�1

2 , hence the 2-order
r = ⌫2(ord(z)) of ord(z) is bounded by  e � 1, and r is minimal with
zu2

r
⌘ 1.
We recursively define a sequence z1, z2, . . . beginning with

z1 = z with r1 = ⌫2(ord(z1)).

71

If zi 2 M2
p is chosen, and ri is the 2-order of ord(zi), then the sequence

terminates if ri = 0. Otherwise we set

zi+1 = zi · b
2e�ri .

Then zi+1 2 M2
p. Furthermore

zu·2
ri�1

i+1 ⌘ zu·2
ri�1

i · bu·2
e�1

⌘ 1,

since the first factor is ⌘ �1 due to the minimality of ri, and the second
factor is ⌘ (bp) = �1, for u · 2e�1 = p�1

2 . Hence ri+1 < ri. The terminating
condition rn = 0 is reached after at most e steps with n  e  log2(p).

Then we compute reversely:

xn = z
u+1
2

n mod p

with x2n ⌘ zu+1
n ⌘ zn (since ord(zn) |u by its odd parity). Recursively

xi = xi+1/b
2e�ri�1

mod p

that by induction satisfies

x2i ⌘ x2i+1/b
2e�ri

⌘ zi+1/b
2e�ri

⌘ zi.

Hence x = x1 is a square root of z.
In addition to the cost of finding b we count the following steps:

• Computing the powers b2, . . . , b2
e�1

, costing (e� 1) modular squares.

• Computing the powers bu, b2u, . . . , b2
e�1u, taking at most

2 · log2(u) + e� 1 congruence multiplications.

• Computing zu, taking at most 2 · log2(u) congruence multiplications.

• Furthermore we compute for each i = 1, . . . , n  e:

– zi by one congruence multiplication,

– zui from zui�1 by one congruence multiplication,

– zu2
r

i from zu2
r

i�1 by one congruence multiplication,

– and then ri.

This makes a total of at most 3 · (e� 1) congruence multiplications.

• xn as a power by at most 2 · log2(u) congruence multiplications.

• xi from xi+1 each by one congruence division with cost O(log(p)2).

Summing up we get costs of size about O(log(p)3) with a rather small con-
stant coe�cient.

72

Example Let p = 29 and z = 5. Then p� 1 = 4 · 7, hence e = 2 and u = 7.
By the remarks above b = 2 is a quadratic nonresidue. We compute
the powers

b2 = 4, bu ⌘ 128 ⌘ 12, b2u ⌘ 144 ⌘ �1,

z2 ⌘ 25 ⌘ �4, z4 ⌘ 16, z6 ⌘ �64 ⌘ �6, z7 ⌘ �30 ⌘ �1.

Now
z1 = 5, zu1 ⌘ �1, z2u1 ⌘ 1, r1 = 1,

z2 ⌘ z1b
2
⌘ 5 · 4 = 20, zu2 ⌘ zu1 b

2u
⌘ (�1)(�1) = 1, r2 = 0.

Now we go backwards:

x2 ⌘ z
u+1
2

2 = z42 = (z22)
2
⌘ 4002 ⌘ (�6)2 = 36 ⌘ 7,

x1 = x2/b mod p = 7/2 mod 29 = 18.

Hence x = 18 is the wanted root. Check: 182 = 324 ⌘ 34 ⌘ 5.

Exercises Find deterministic algorithms (= simple formulas) for taking
square roots in the fields

• Fp with p ⌘ 5 (mod 8)

• F2m with m � 2 [Hints: 1. Consider the order of the radicand in
the multiplicative group. 2. Invert the linear map x 7! x2.]

• Fq for q = pm

Alternative algorithms: Almost all known e�cient algorithms that com-
pletely cover the case p ⌘ 1 (mod 4) are probabilistic and have
a deterministic variant whose cost is polynomial assuming ERH.
The book by Forster (Algorithmische Zahlentheorie) has a vari-
ant of the Cipolla/AMM algorithm that uses the quadratic exten-
sion Fp2 ◆ Fp and is conceptionally quite simple. The Handbook of

Applied Cryptography (Menezes/van Oorschot/Vanstone) con-
tains an algorithm by Tonelli 1891 that admits a concise formu-
lation, but cost O(log(p)4). Another method is a special case of the
Cantor/Zassenhaus algorithm for factoring polynomials over finite
fields, see von zur Gathen/Gerhard: Modern Computer Algebra.

Yet another procedure by Lehmer uses the Lucas sequence (an) with
a1 = b, a2 = b2 � 2z, where b2 � 4z is a quadratic nonresidue. The
only known deterministic algorithm with proven polynomial cost was
given by Schoof. It uses elliptic curves, and costs O(log(p)9), so it is
of theoretical interest only.

For overviews see:

73

• E. Bach/ J. Shallit: Algorithmic Number Theory. MIT Press, Cam-
bridge Mass. 1996.

• D. J. Bernstein: Faster square roots in annoying finite fields.
Preprint (siehe die Homepage des Autors http://cr.yp.to/).

74

5.4 Square Roots for Prime Power Modules

A simple procedure (implicitly using Hensel’s lifting) allows to extend the
square root algorithms from prime modules to prime powers. Let p be a
prime 6= 2, and let e � 2. Let z be a quadratic residue mod pe. We want to
find a square root of z.

Of course z is also a quadratic residue modpe�1. Assume we already
have found a root for it, that is a y with y2 ⌘ z (mod pe�1). Let

a = 1/(2y) mod p

and y2 � z = pe�1
· u. We set

x := y � a · (y2 � z) mod pe.

Then we have

x2 ⌘ y2 � 2ay(y2 � z) + a2(y2 � z)2 ⌘ y2 � 2aype�1u

⌘ y2 � pe�1u = z (mod pe).

Hence x is a square root of z mod pe.
We wont explicit this algorithm but illustrate it with two examples:

Examples

1. n = 25, z = 19. We have p = 5, 19 mod 5 = 4. Hence we can take
y = 2 and a = 1/4 mod 5 = 4. Then y2 � z = �15 and

x = 2 + 15 · 4 mod 25 = 62 mod 25 = 12.

Check: 122 = 144 = 125 + 19.

2. n = 27, z = 19. We have p = 3, 19 mod 3 = 1. Hence in the first step
we can take y = 1 and a = 1/2 mod 3 = 2. Then y2 � z = �18 and

x = 1 + 2 · 18 mod 9 = 37 mod 9 = 1.

For the second step (from 9 to 27) again y = 1, y2 � z = �18, and

x = 37 mod 27 = 10.

Check: 102 = 100 = 81 + 19.

The costs consist of two contributions:

1. One square root mod p and one division. (The quotient a needs to be
computed only once since x ⌘ y (mod p).)

75

2. Each time the exponent is incremented we execute two congruence
multiplications and two subtractions.

Hence the total cost is O(log(n)3) for the module n.
Finally we have to consider the case where n = 2e is a power of two.
For e  3 the only quadratic residue is 1, its square root is 1.
For larger exponents e we have again a recurrence to e � 1: Let z be

an odd integer (all invertible elements are odd). Assume we already found
a y with y2 ⌘ z (mod 2e�1). Then y2 � z = 2e�1

· t. If t is even, then
y2 ⌘ z (mod 2e). Otherwise we set x = y + 2e�2. Then

x2 ⌘ y2 + 2e�1y + 22e�4
⌘ z + 2e�1

· (t+ y) ⌘ z (mod 2e),

since t + y is even. Hence x = y or y + 2e�2 is a square root of z. Here the
cost is even smaller than O(log(n)3).

By the way we have shown that z is a quadratic residue mod2e (for
e � 3) if and only if z ⌘ 1 (mod 8).

76

5.5 Square Roots for Composite Modules

If we know the prime decomposition of the module n, then we can e�ciently
compute square roots in Mn. The two tasks “factoring” and “computing
square roots” are equivalent with respect to their complexity.

For an execution of the procedure we successively decompose n into
coprime factors (down to the prime powers).

So let n = rs with coprime factors r and s. First we compute coe�cients
a and b such that ar + bs = 1 using the extended Euclidean algorithm.

We want to find a square root of z. Let u be a square root mod r and v be
a square root mod s. Then x := arv + bsu mod n satisfies the congruences:

x ⌘ bsu ⌘ u (mod r), x ⌘ arv ⌘ v (mod s),

x2 ⌘ u2 ⌘ z (mod r), x2 ⌘ v2 ⌘ z (mod s),

hence x2 ⌘ z (mod n).
The cost for this procedure is two square roots modulo the factors, one

Euclidean algorithm, and four congruence multiplications (+ 1 congruence
addition). Hence it is O(log(n)3).

For Blum integers (see Appendix A.11) we even have a simpler algo-
rithm, namely an explicit formula:

Corollary 1 Let n = pq with primes p, q ⌘ 3 (mod 4). Then

(i) d = (p�1)(q�1)+4
8 is an integer.

(ii) For each quadratic residue x 2 M2
n the power xd is the (unique) square

root of x in M2
n.

Proof. (i) If p = 4k+ 3, q = 4l+ 3, then (p� 1)(q� 1) = 16kl+ 8k+ 8l+ 4,
hence d = 2kl + k + l + 1.

(ii) The exponent of the multiplicative group Mn,

�(n) = kgV(p� 1, q � 1) = 2 · kgV(2k + 1, 2l + 1)

is a divisor of 2 · (2k + 1) · (2l + 1), The exponent of the subgroup M2
n of

squares is �(n)
2 , hence a divisor of (2k+1)·(2l+1) = 4kl+2k+2l+1 = 2d�1.

Thus x2d ⌘ x (mod n) for all x 2 M2
n, thus the square of xd is x. 3

This simple formula has the e↵ect that the Rabin cipher is especially
easy to handle for Blum integer modules.

77

