5.1 Discrete Logarithm and Factorization

Let $a \in \mathbb{M}_{n}$, ord $a=s$, and consider the exponential function

$$
\exp _{a}: \mathbb{Z} \longrightarrow \mathbb{M}_{n}
$$

The problem of computing discrete logarithms $\bmod n$ is to find an algorithm that for each $y \in \mathbb{M}_{n}$

- outputs "no" if $y \notin\langle a\rangle$,
- else outputs an $r \in \mathbb{Z}$ with $0 \leq r<s$ and $y=a^{r} \bmod n$.

Proposition 15 (E. ВАсн) Let $n=p q$ with different primes $p, q \geq 3$. Then factoring n admits a probabilistic efficient reduction to the computation of discrete logarithms $\bmod n$.

Proof. We have $\varphi(n)=(p-1)(q-1)$. For a randomly chosen $x \in \mathbb{M}_{n}$ always $x^{\varphi(n)} \equiv 1(\bmod n)$. Let $y:=x^{n} \bmod n$, thus

$$
y \equiv x^{n} \equiv x^{n-\varphi(n)}=x^{p q-(p-1)(q-1)}=x^{p+q-1} \quad(\bmod n) .
$$

The discrete logarithm yields an r with $0 \leq r<\operatorname{ord} x \leq \lambda(n)$ and $y=x^{r} \bmod n$. Hence

$$
x^{r-(p+q-1)} \equiv 1 \quad(\bmod n), \quad \text { ord } x \mid r-(p+q-1) .
$$

Since $|r-(p+q-1)|<\lambda(n)$ the probability is high that $r=p+q-1$. This happens for example if ord $x=\lambda(n)$. Otherwise choose another x.

From the two equations

$$
\begin{aligned}
p+q & =r+1 \\
p \cdot q & =n
\end{aligned}
$$

we easily compute the factors p and q.

