
Modes of Operation of Block Ciphers

Klaus Pommerening
Fachbereich Physik, Mathematik, Informatik

der Johannes-Gutenberg-Universität
Saarstraße 21

D-55099 Mainz

April 7, 1997—English version August 19, 2014
last change January 20, 2021

A bitblock encryption function f : Fn
2 −→ Fn

2 is primarily defined on
blocks of fixed length n. To encrypt longer (or shorter) bit sequences the
sender must

1. split the sequence into n-bit blocks,

2. pad the last block if necessary with

• zeroes or

• random values or

• context information.

Then each block is encrypted by f , but in general one uses some sort of
“chaining”. Four chaining procedures, called “modes of operation” were
standardized together with DES:

• ECB,

• CBC,

• CFB,

• OFB.

These chaining procedures apply to each block cipher. The standardization
in the context of AES added two more modes:

• CTR,

• XTS.

1



K. Pommerening, Bitblock Ciphers 2

For a description of the modes a suitable general framework is a “block
alphabet” Σ, with Fn

2 as most important example, equipped with a group
composition ∗. Furthermore we fix an encryption function

f : Σ −→ Σ.

The dependence on the key doesn’t matter in this context and therefore is
dropped in the notation.



K. Pommerening, Bitblock Ciphers 3

1 ECB = Electronic Code Book

Description

Let r be the number of blocks of the plaintext (a1, . . . , ar).

Encryption: In ECB mode each block is encrypted independently of the
other blocks:

a = (a1, . . . , ar) 7→ c = (c1, . . . , cr) ∈ Σr with ci = f(ai).

a1 - c1

a2 - c2

...
...

ar - cr

Decryption: ai = f−1(ci).

Properties

ECB mode simply is a monoalphabetic substitution on Σ. For sufficiently
large #Σ this is secure from a ciphertext-only attack. But there are several
disadvantages:

• ECB encryption leaks information on identical blocks. Even
if the plaintext is not random, the rule of thumb from the
Birthday Paradox applies in the interpretation (for Σ = Fn

2 ):
“After 2n/2 bits ECB encryption begins to leak informa-
tion.” Wikipedia has a nice illustration of this effect, see
http://en.wikipedia.org/wiki/Block cipher mode of operation

The other modes significantly enlarge this bound.

• Building a “codebook” from known plaintext blocks is not unrealis-
tic. For structured messages, say bank transactions, there occur many
blocks of known plaintext.

• An active attack by exchanging or inserting single blocks of ciphertext
(for example with known, “sympathic” plaintext) is possible. For ex-
ample an attacker who knows which block contains the receiver of a
money transfer could exchange this block with a corresponding block
from another transfer for another receiver. He doesn’t need to know
the key.

http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation


K. Pommerening, Bitblock Ciphers 4

• If the situation allows for an attack with chosen plaintext (as in a black
box analysis), trial encryption and dictionary attacks can be mounted.

In view of these problems generating diffusion between the plaintext blocks
seems a much better approach. In the following sections we look at modes
of operation that achieve this effect.



K. Pommerening, Bitblock Ciphers 5

2 CBC = Cipher Block Chaining

Description

Choose a start value c0 at random (also called IV = “Initialization Vector”).
Then the procedure looks like this:

c0����9
a1 - ∗ -f c1����9
a2 - ∗ -f c2

...
...

����9
ar - ∗ -f cr

Encryption: In CBC mode the formula for encryption is:

ci := f(ai ∗ ci−1) for i = 1, . . . , r

= f(ai ∗ f(ai−1 ∗ · · · f(a1 ∗ c0) . . .)).

Decryption: ai = f−1(ci) ∗ c−1
i−1 for i = 1, . . . , r.

Properties

• Each ciphertext block depends on all previous plaintext blocks (diffu-
sion).

• An attacker is not able to replace or insert text blocks unnoticeably.

• Identical plaintext blocks in general encrypt to different ciphertext
blocks.

• On the other side an attack with known plaintext is not more difficult,
compared with ECB mode.

• Each plaintext block depends on two ciphertext blocks.

• As a consequence a transmission error in a single ciphertext block
results in (only) two corrupted plaintext blocks (“self synchronisation”
of CBC mode).

Question: Does it make sense to treat the initialization vector c0 as secret
and use it as an additional key component? (Then for the example
of DES we had 56 proper key bits plus a 64 bit initialization vector,
making a total of 120 key bits.)



K. Pommerening, Bitblock Ciphers 6

Answer: No!

Reason: In the decryption process only a1 depends on c0. This means that
keeping c0 secret conceals known plaintext only for the first block. If
the attacker knows the second or a later plaintext block, then she may
determine the key as in ECB mode (by exhaustion, or by an algebraic
attack, or by any other attack with known plaintext).

Remarks

1. CBC is the composition f◦ (ciphertext autokey). In the trivial case
f = 1Σ only the (completely unsuited) ciphertext autokey cipher with
key length 1 is left.

2. (John Kelsey in the mailing list cryptography@c2.net, 24 Nov 1999)
If there occurs a “collision” ci = cj for i 6= j, then f(ai ∗ ci−1) =
f(aj∗cj−1), hence ai∗ci−1 = aj∗cj−1 and therefore a−1

j ∗ai = cj−1∗c−1
i−1.

In this way the attacker gains some information on the plaintext.

By the Birthday Paradox this situation is expected after about
√

#Σ
blocks.

The longer the text, the more such collisions will occur. This effect
reassures the rule of thumb for the frequency of key changes: change
the key in good time before you encrypt

√
#Σ blocks.



K. Pommerening, Bitblock Ciphers 7

3 Variants of CBC

Plaintext Autokey

Replacing the ciphertext autokey encryption for CBC mode by plaintext
autokey yields the following scheme:

a0 XXXXz
a1 XXXXz

- ∗ -f c1

XXXXz

a2 - ∗ -f c2

...
...

ar - ∗ -f cr

that sometimes is called PBC = Plaintext Block Chaining.

Encryption: After choosing an initialization vector a0 the formula for en-
cryption is:

ci := f(ai ∗ ai−1) for i = 1, . . . , r.

Decription: The formula is:

ai = f−1(ci) ∗ a−1
i−1 for i = 1, . . . , r.

However this method seems not to be in widely accepted use, and there
seem to be no relevant results on its security.

PCBC = error-Propagating CBC

This procedure mixes CBC and PBC. It follows the scheme:

c0����9

XXXXz

a1 - ∗ -f c1����9
a2 - ∗ -f c2

...
...

XXXXz
����9

ar - ∗ -f cr



K. Pommerening, Bitblock Ciphers 8

Encryption: After choosing the initialization vector a0 = e (neutral ele-
ment of the group) encryption is by the formula

ci := f(ai ∗ ai−1 ∗ ci−1) for i = 1, . . . , r.

In the case of a bitblock cipher we choose a0 = 0, the null block.

Decryption: The formula is

ai = f−1(ci) ∗ c−1
i−1 ∗ a

−1
i−1 for i = 1, . . . , r.

This mode was implemented in early versions of Kerberos but then aban-
doned.

Generalization by Meyer/Matyas

ci := f(ai ∗ h(ai−1, ci−1)) for i = 1, . . . , r,

where in the case Σ = Fn
2 addition modulo 2n is suggested for h.

BCM = Block Chaining Mode

This mode follows the scheme:

c0 - d1
���������9

a1 - ∗ -f c1 - ∗
?

d2
���������9

a2 - ∗ -f c2 - ∗
?

d3

...
...

���������9
ar - ∗ -f cr

Formula for encryption:

di := c0 ∗ . . . ∗ ci−1,

ci := f(ai ∗ di) for i = 1, . . . , r.



K. Pommerening, Bitblock Ciphers 9

An Application of CBC

CBC-MAC (= “Message Authentication Code”) is a key-dependent “hash
function” that serves for checking the integrity of messages. It is standard-
ized in ISO/IEC 9797 and used in electronic banking.

Sender and receiver of the message—these could be the same person if
the MAC used for securing the integrity of a stored file—share the key k
and use the encryption function f = fk.

The MAC of a text a = (a1, . . . , ar) is the last ciphertext block where a
is encrypted in CBC mode. Hence

MAC(a) = cr = f(ar ∗ f(ar−1 ∗ · · · f(a1 ∗ c0) . . .)).

If MAC(a) is sent together with a, then the receiver may check the authen-
ticity of the sender and the integrity of the content. Only someone who has
the key can calculate this value correctly.

The disadvantage of this procedure is the need of sharing a secret k. In
a legal dispute each of the two parties can contend a forgery by the other
one.



K. Pommerening, Bitblock Ciphers 10

4 CFB = Cipher Feedback

Description (of the simplest version)

c0����9
a1 - ∗ -

f
c1����9

a2 - ∗ -
f

c2

...
...

����9
ar - ∗ -

f
cr

Encryption in CFB mode is by the formula

ci := ai ∗ f(ci−1) for i = 1, . . . , r

= ai ∗ f(ai−1 ∗ f(· · · a1 ∗ f(c0) . . .)).

Decryption: ai = ci ∗ f(ci−1)−1 for i = 1, . . . , r.

Properties

• As before the initialization vector is unsuited as additional key com-
ponent.

• As before this mode doesn’t make an attack with known plaintext
more difficult.

• Note that also decryption uses f , not f−1. Therefore:

– CFB mode doesn’t make sense for asymmetric ciphers.

– On the other hand CFB mode may be used with a (key depen-
dent) one-way or hash function f .

• For the identical map f = 1Σ CFB again reduces to ciphertext autokey.

• (David Wagner) ECB ◦CFB = CBC:

For a proof take c0 as initialization vector for CFB, and c′0 := f(c0) as
initialization vector for CBC. Then

c1 = CFB(a1) = a1 ∗ f(c0),

c′1 = ECB(c1) = f(a1 ∗ f(c0)) = f(a1 ∗ c′0) = CBC(a1),

c2 = CFB(a2) = a2 ∗ f(c1),

c′2 = ECB(c2) = f(a2 ∗ f(c1)) = f(a2 ∗ c′1) = CBC(a2),

etc.



K. Pommerening, Bitblock Ciphers 11

The Standardized Version

. . . uses a shift register, hence is defined only in the case of Σ = Fn
2 . Here

1 ≤ t ≤ n, and the encryption procedure uses blocks ai ∈ Ft
2 of length t.

The current ciphertext block ci of length t is shifted from the right into the
shift register (drawn in red):

q0 c0 -f p1 q1

?
a1 - -

⊕
c1

?
q1 c1 -f p2 q2

?
a2 - -

⊕
c2

...
...

?
qr−1 cr−1 -f pr qr

?
ar - -

⊕
cr

The qi are bitblocks of length n− t.
As it turned out later the security of this more general version decreases

with t. Therefore its use is not recommended.



K. Pommerening, Bitblock Ciphers 12

5 OFB = Output Feedback

Description (of the simplest version)

s0

?
f

a1 ∗ s1 = c1

?
f

a2 ∗ s2 = c2

?
...

...
...

?
f

ar ∗ sr = cr

This mode also was originally defined as shift register version. Here too using
a blocklength of t < n weakens the security [Jueneman, Crypto 82].

Encryption in OFB mode is by the formula

ci := ai ∗ si, si := f(si−1) for i = 1, . . . , r.

Decryption by the formula

ai = ci ∗ s−1
i , si := f(si−1) for i = 1, . . . , r.

Properties

• There is no diffusion. However identical plaintext blocks in general
yield different ciphertext blocks.

• In the case Σ = Fs
2 OFB simply is a bitstream cipher where f serves

as “random generator”.

• If encryption or decryption is time critical, the sender or the receiver
(or both) might precalculate the “key stream” si.

• Here too the decryption uses only f , not f−1.

• For Σ = Fs
2 the cipher is an involution, that is encryption and decryp-

tion are the same function. More generally this holds when the group
Σ has exponent 2.



K. Pommerening, Bitblock Ciphers 13

• Under an attack with known plaintext the pair (a1, c1) reveals the
value of s1, the next pair (a2, c2), the value of s2 = f(s1). This leads
to an attack with known plaintext against the function f itself.

• Keeping the initialization vector s0 secret doesn’t increase the security
of the cipher for OFB (like for the other modes).

Variant: Counter Mode CTR

The simplest case is

ci := ai ∗ f(i) for i = 1, . . . , r.

There are same slight variants, for example starting with another number
than 1.


	ECB = Electronic Code Book
	CBC = Cipher Block Chaining
	Variants of CBC
	CFB = Cipher Feedback
	OFB = Output Feedback

