4 Density and Redundancy of a Language

Shannon's theory provides an idea of an unbreakable cipher via the concept of perfection. Moreover it develops the concept of "unity distance" as a measure of the difference to perfection. This concept takes up the observation that the longer a ciphertext, the easier is its unique decryption.

We don't want to develop this theory in a mathematically precise way, but only give a rough impression. For a mathematically more ambitious approach see [11].

Unique Solution of the Shift Cipher

Let the ciphertext FDHVDU be the beginning of a message that was encrypted using a CAESAR cipher. We solved it by exhaustion applying all possible 26 keys in order:

Key	Plaintext	t=1	t=2	t = 3	t=4	t=5	t = 6
0	fdhvdu	+					
1	ecguct	+	+				
2	dbftbs	+					
3	caesar	+	+	+	+	+	+
4	bzdrzq	+					
5	aycqyp	+	+				
6	zxbpxo	+					
7	ywaown	?					
8	xvznvm	?					
9	wuymul	+	+				
10	vtxltk	+					
11	uswksj	+	+	?			
12	trvjri	+	+				
13	squiqh	+	+	+	+		
14	rpthpg	+					
15	qosgof	+					
16	pnrfne	+	+				
17	omqemd	+	+				
18	nlpdlc	+					
19	mkockb	+					
20	ljnbja	+					
21	kimaiz	+	+	+	?	?	
22	jhlzhy	+					
23	igkygx	+	+				
24	hfjxfw	+					
25	geiwev	+	+	+	?		

The flags in this table stand for:

10

- \bullet +: The assumed plaintext makes sense including the t-th letter.
- ?: The assumed plaintext could make sense including the t-th letter but with low probability.

Given the first five letters only one of the texts seems to make sense. We would call this value 5 the "unicity distance" of the cipher.

Mathematical Model

Let us start again with an n-letter alphabet Σ . The "information content" of a letter is $\log_2 n$, for we need $\lceil \log_2 n \rceil$ bits for a binary encoding of all of Σ .

Example For n = 26 we have $\log_2 n \approx 4.7$. Thus we need 5 bits for encoding all letters differently. One such encoding is the teleprinter code.

Now let $M \subseteq \Sigma^*$ be a language. Then $M_r = M \cap \Sigma^r$ is the set of "meaningful" texts of length r, and $\Sigma^r - M_r$ is the set of "meaningless" texts. Denote the number of the former by

$$t_r := \# M_r$$
.

Then $\log_2 t_r$ is the "information content" of a text of length r or the **entropy** of M_r . This is the number of bits we need for distinguishing the elements of M_r in a binary encoding.

Remark More generally the entropy is defined for a model that assigns the elements of M_r different probabilities. Here we implicitly content ourselves with using a uniform probability distribution.

We could consider the relative frequency of meaningful texts, t_r/n^r , but instead we focus on the **relative information content**,

$$\frac{\log_2 t_r}{r \cdot \log_2 n} :$$

For an encoding of Σ^r we need $r \cdot \log_2 n$ bits, for an encoding of M_r only $\log_2 t_r$ bits. The relative information content is the factor by which we can "compress" the encoding of M_r compared with that of Σ^r . The complimentary portion

$$1 - \frac{\log_2 t_r}{r \cdot \log_2 n}$$

is "redundant".

Usually one relates these quantities to $\log_2 n$, the information content of a single letter, and defines:

11

Definition 2 (i) The quotient

$$\rho_r(M) := \frac{\log_2 t_r}{r}$$

is called the r-th density, the difference $\delta_r(M) := \log_2 n - \rho_r(M)$ is called the r-th redundancy of the language M.

(ii) If $\rho(M) := \lim_{r \to \infty} \rho_r(M)$ exists, it is called the **density** of M, and $\delta(M) := \log_2 n - \rho(M)$ is called the **redundancy** of M.

Remarks

- 1. Since $0 \le t_r \le n^r$, we have $\overline{\lim} \rho_r(M) \le \log_2 n$.
- 2. If $M_r \neq \emptyset$, then $t_r \geq 1$, hence $\rho_r(M) \geq 0$. If $M_r \neq \emptyset$ for almost all r, then $\underline{\lim} \rho_r(M) \geq 0$.
- 3. If $\rho(M)$ exists, then $t_r \approx 2^{r\rho(M)}$ for large r.

For natural languages one knows from empirical observations that $\rho_r(M)$ is (more or less) monotonically decreasing. Therefore density and redundancy exist. Furthermore $t_r \geq 2^{r\rho(M)}$. Here are some empirical values (for n = 26):

M	$\rho(M) \approx$	$\delta(M) \approx$
English	1.5	3.2
German	1.4	3.3

The redundancy of English is $\frac{3.2}{4.7} \approx 68\%$ (but $\boxed{2}$ says 78%; also see $\boxed{10}$). One expects that an English text (written in the 26 letter alphabet) can be compressed by this factor. The redundancy of German is about $\frac{3.3}{4.7} \approx 70\%$ $\boxed{10}$.