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4 Density and Redundancy of a Language

Shannon’s theory provides an idea of an unbreakable cipher via the concept
of perfection. Moreover it develops the concept of “unity distance” as a
measure of the di↵erence to perfection. This concept takes up the observation
that the longer a ciphertext, the easier is its unique decryption.

We don’t want to develop this theory in a mathematically precise way,
but only give a rough impression. For a mathematiclly more ambitious ap-
proach see [11].

Unique Solution of the Shift Cipher

Let the ciphertext FDHVDU be the beginning of a message that was encrypted
using a Caesar cipher. We solved it by exhaustion applying all possible 26
keys in order:

Key Plaintext t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
0 fdhvdu +
1 ecguct + +
2 dbftbs +
3 caesar + + + + + +
4 bzdrzq +
5 aycqyp + +
6 zxbpxo +
7 ywaown ?
8 xvznvm ?
9 wuymul + +
10 vtxltk +
11 uswksj + + ?
12 trvjri + +
13 squiqh + + + +
14 rpthpg +
15 qosgof +
16 pnrfne + +
17 omqemd + +
18 nlpdlc +
19 mkockb +
20 ljnbja +
21 kimaiz + + + ? ?
22 jhlzhy +
23 igkygx + +
24 hfjxfw +
25 geiwev + + + ?

The flags in this table stand for:
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• +: The assumed plaintext makes sense including the t-th letter.

• ?: The assumed plaintext could make sense including the t-th letter
but with low probability.

Given the first five letters only one of the texts seems to make sense. We
would call this value 5 the “unicity distance” of the cipher.

Mathematical Model

Let us start again with an n-letter alphabet ⌃. The “information content”
of a letter is log2 n, for we need dlog2 ne bits for a binary encoding of all of
⌃.

Example For n = 26 we have log2 n ⇡ 4.7. Thus we need 5 bits for encoding
all letters di↵erently. One such encoding is the teleprinter code.

Now let M ✓ ⌃⇤ be a language. Then Mr = M \ ⌃r is the set of
“meaningful” texts of length r, and ⌃r � Mr is the set of “meaningless”
texts. Denote the number of the former by

tr := #Mr.

Then log2 tr is the “information content” of a text of length r or the entropy
of Mr. This is the number of bits we need for distinguishing the elements of
Mr in a binary encoding.

Remark More generally the entropy is defined for a model that assigns
the elements of Mr di↵erent probabilities. Here we implicitly content
ourselves with using a uniform probability distribution.

We could consider the relative frequency of meaningful texts, tr/nr, but
instead we focus on the relative information content,

log2 tr
r · log2 n

:

For an encoding of ⌃r we need r · log2 n bits, for an encoding of Mr only
log2 tr bits. The relative information content is the factor by which we can
“compress” the encoding of Mr compared with that of ⌃r. The complimen-
tary portion

1� log2 tr
r · log2 n

is “redundant”.
Usually one relates these quantities to log2 n, the information content of

a single letter, and defines:



K. Pommerening, Theoretical Security 11

Definition 2 (i) The quotient

⇢r(M) :=
log2 tr

r

is called the r-th density, the di↵erence �r(M) := log2 n� ⇢r(M) is
called the r-th redundancy of the language M .

(ii) If ⇢(M) := limr!1 ⇢r(M) exists, it is called the density of M ,
and �(M) := log2 n� ⇢(M) is called the redundancy of M .

Remarks

1. Since 0  tr  nr, we have lim ⇢r(M)  log2 n.

2. If Mr 6= ;, then tr � 1, hence ⇢r(M) � 0. If Mr 6= ; for almost
all r, then lim ⇢r(M) � 0.

3. If ⇢(M) exists, then tr ⇡ 2r⇢(M) for large r.

For natural languages one knows from empirical observations that ⇢r(M)
is (more or less) monotonically decreasing. Therefore density and redun-
dancy exist. Furthermore tr � 2r⇢(M). Here are some empirical values (for
n = 26):

M ⇢(M) ⇡ �(M) ⇡
English 1.5 3.2
German 1.4 3.3

The redundancy of English is 3.2
4.7 ⇡ 68% (but [2] says 78%; also see [10]).

One expects that an English text (written in the 26 letter alphabet) can be
compressed by this factor. The redundancy of German is about 3.3

4.7 ⇡ 70%
[10].


