Quadratic Equations in Finite Fields of Characteristic 2

Klaus Pommerening

May 2000 – english version February 2012

Quadratic equations over fields of characteristic \(\neq 2 \) are solved by the well known quadratic formula that up to rational operations reduces the general case to the square root function, the inverse of the square map \(x \mapsto x^2 \). The solvability of a quadratic equation can be decided by looking at the discriminant—essentially the argument of the square root in the formula.

The situation in characteristic 2 is somewhat different.

1 The general solution

Let \(K \) be a field of characteristic 2. We want to study the roots of a quadratic polynomial
\[
 f = aT^2 + bT + c \in K[T] \quad \text{with} \ a \neq 0.
\]

The case \(b = 0 \)—the degenerate case—is very simple. We have
\[
 a \cdot f = (aT)^2 + ac = g(aT) \quad \text{with} \ g = T^2 + ac \in K[T].
\]

The squaring map \(x \mapsto x^2 \) is an \(\mathbb{F}_2 \)-linear monomorphism of \(K \), an automorphism if \(K \) is perfect, for example finite. Therefore \(ac \) has at most one square root in \(K \), and exactly one square root in the algebraic closure \(\bar{K} \). Let \(ac = d^2 \). Then \(g \) has exactly the one root \(d \), and \(f \) has exactly the one root \(\frac{d}{a} \) in \(\bar{K} \). For an explicit determination we have to extract the square root from \(ac \) in \(K \) or in an extension field \(L \) of degree 2 of \(K \), i. e. to invert the square map in \(K \) or \(L \). Remember that the square map is linear over \(\mathbb{F}_2 \). For examples see Section 3 below.

Now let \(b \neq 0 \). Because the derivative \(f' = b \) is constant \(\neq 0 \), \(f \) has two distinct (simple) roots in the algebraic closure \(\bar{K} \). The transformation
\[
 \frac{a}{b^2} \cdot f = (\frac{a}{b} T)^2 + \frac{a}{b} T + \frac{ac}{b^2} = g(\frac{a}{b} T) \quad \text{with} \ g = T^2 + T + d, \ d = \frac{ac}{b^2} \in K,
\]
reduces our task to the roots of the polynomial \(g \). Let \(u \) be a root of \(g \) in \(\bar{K} \). Then \(u + 1 \) is the other root by VIETA’s formula, and \(u(u + 1) = d \), that is \(d = u^2 + u \). Therefore the problem for the general quadratic polynomial is reduced to the ARTIN-SCHREIER polynomial \(T^2 + T + d \), and thereby to inverting the ARTIN-SCHREIER map \(K \rightarrow K \), \(x \mapsto x^2 + x \). Note that this map also is linear. However in general it is neither injective
nor surjective. Its kernel is the set of elements \(x \) with \(x^2 = x \), that is the prime field \(\mathbb{F}_2 \) inside of \(K \). The preimages \(u \) and \(u + 1 \) of a given element \(d \in K \) may be found in \(K \) or in a quadratic extension \(L = K(u) \) of \(K \). To get the roots of \(f \) we set \(d = \frac{ac}{b^2} \) and determine a preimage \(u \) of \(d \) under the Artin-Schreier map. Then a root of \(f \) is \(x = \frac{bu}{a} \); the other root is \(x + \frac{b}{a} \).

2 The case of a finite field

Now we consider the case where \(K \) is finite. Then \(K \) has \(2^n \) elements for some \(n \), and coincides with the field \(\mathbb{F}_{2^n} \) up to isomorphism. The trace of an element \(x \in K \) is given by the formula
\[
\text{Tr}(x) = x + x^2 + \cdots + x^{2^{n-1}}.
\]
It is an element of the prime field \(\mathbb{F}_2 \), i.e., 0 or 1, and \(\text{Tr}(x^2) = \text{Tr}(x) \).

Lemma 1 Let \(K \) be a finite field with \(2^n \) elements. Then the polynomial \(g = T^2 + T + d \in K[T] \) has a root \(u \) in \(K \), if and only if \(\text{Tr}(d) = 0 \). In this case \(g = h(T + u) \) with \(h = T^2 + T \).

Proof. "\(\Rightarrow \)" If \(u \in K \), then \(\text{Tr}(d) = \text{Tr}(u^2) + \text{Tr}(u) = 0 \).

"\(\Leftarrow \)" For the converse let \(\text{Tr}(d) = 0 \). Then
\[
0 = \text{Tr}(d) = d + d^2 + \cdots + d^{2^{n-1}} = (u^2 + u) + (u^4 + u^2) + \cdots + (u^{2^n} + u^{2^n-1}) = u + u^{2^n},
\]
hence \(u^{2^n} = u \), and therefore \(u \in K \).

The addendum is trivial. ◊

Remark Let \(L \) be a quadratic extension of \(K \), and \(\tilde{\text{Tr}} : L \rightarrow \mathbb{F}_2 \) its trace function. Then \(L \cong \mathbb{F}_{2^{2n}} \) and
\[
\tilde{\text{Tr}}(x) = x + x^2 + \cdots + x^{2^{n-1}} + x^{2n} + \cdots + x^{2^{2n-1}}.
\]
For \(x \in K \) we have \(x^{2^n} = x \), hence \(\tilde{\text{Tr}}(x) = 0 \). This is consistent with the statement of the lemma that \(g = T^2 + T + d \in K[T] \) has a root in \(L \).

Corollary 1 \(g = T^2 + T + d \in K[T] \) is irreducible, if and only if \(\text{Tr}(d) = 0 \). If this is the case, then \(g = h(T + r) \) with \(h = T^2 + T + e \), where \(e \) is an arbitrarily chosen element of \(K \) with Trace \(\text{Tr}(e) = 1 \), and \(r \in K \) is a solution of \(r^2 + r = d + e \).

Proof. \(g \) is irreducible in \(K[T] \), if and only if it has no root in \(K \). The addendum follows because \(d + e \) has trace 0, hence has the form \(r^2 + r \). ◊
Note 1. The lemma is a special case of Hilbert’s Theorem 90, additive form.

Note 2. The Artin-Schreier Theorem generalizes these results to arbitrary finite base fields \mathbb{F}_q instead of \mathbb{F}_2, and to polynomials $T^q - T - d$. It characterizes the cyclic field extensions of degree q.

We have shown:

Proposition 1 (Roots) Let K be a finite field of characteristic 2, and let $f = aT^2 + bT + c \in K[T]$ be a polynomial of degree 2. Then:

(i) f has exactly one root in $K \iff b = 0$.

(ii) f has exactly two roots in $K \iff b \neq 0$ and $\text{Tr}(ac) = 0$.

(iii) f has no root in $K \iff b \neq 0$ and $\text{Tr}(ac) = 1$.

Proposition 2 (Normal form) Let K be a finite field of characteristic 2, and $f = aT^2 + bT + c \in K[T]$ be a polynomial of degree 2 i.e. $a \neq 0$. Then there is a $k \in K^\times$ and an affine transformation $\alpha : K \rightarrow K$, $\alpha(x) = rx + s$ with $r \in K^\times$ and $s \in K$, such that

$$k \cdot f \circ \alpha = T^2, \quad T^2 + T, \quad \text{or} \quad T^2 + T + e,$$

where $e \in K$ is a fixed (but arbitrarily chosen) element of Trace $\text{Tr}(e) = 1$. In the case of odd $n = \dim K$ we may chose $e = 1$.

3 Examples

As we have seen the key to solving quadratic equations in characteristic 2 is solving systems of linear equations whose coefficient matrix is the matrix of the Artin-Schreier map, or the square map in the degenerate case. To explicitly solve quadratic equations over a finite field K of characteristic 2 we first have to fix a basis of K over \mathbb{F}_2. There are several options, and none of them is canonical. One option is to build a basis successively along a chain of intermediate fields between \mathbb{F}_2 and K.

For this we first consider a field extension L of K of degree 2. If K has 2^n elements, then the cardinality of L is 2^{2n}, and we may construct L from K by adjoining a root t of an irreducible degree 2 polynomial $T^2 + T + d \in K[T]$ where $\text{Tr}(d) = 1$, see Lemma 1. Then a basis of L over K is $\{1, t\}$, and if $\{u_1, \ldots, u_n\}$ is a basis of K over \mathbb{F}_2, then $\{u_1, \ldots, u_n, tu_1, \ldots, tu_n\}$ is a basis of L over \mathbb{F}_2.

Now the square map has the same effect on the u_i in L as in K, and

$$(tu_i)^2 = t^2 u_i^2 = (t + d)u_i^2 = t\cdot u_i^2 + d \cdot u_i^2.$$

If we denote by Q_n resp. Q_{2n} the matrices of the square maps of K or L with respect to the chosen bases, then

$$Q_{2n} = \begin{pmatrix} Q_n & LdQ_n \\ 0 & Q_n \end{pmatrix},$$

3
where L_d is the matrix of the left multiplication by d in K. The Q_n in the right lower corner of the matrix comes from the fact that $t \cdot u_i^2 = t \cdot \sum q_{ij} u_j = \sum q_{ij} t u_j$ where the q_{ij} are the matrix coefficients of Q_n.

Note that for odd n we may choose $d = 1$, hence $L_d = 1_n$, the $n \times n$ unit matrix.

The matrix A_n of the ARTIN-SCHREIER map is $1_n + Q_n$, this means that in Q_n we simply have to complement the diagonal entries, i.e. interchange 0 and 1.

The case $n = 1$

Let us first consider the simplest case $K = \mathbb{F}_2$. Its \mathbb{F}_2-basis is $\{1\}$, and the matrices are the 1×1-matrices $Q_n = (1)$ and $A_n = (0)$. Solving quadratic equations is trivial.

The case $n = 2$

The field \mathbb{F}_4 is an extension of \mathbb{F}_2 of degree 2. An \mathbb{F}_2-basis is $\{1, t\}$ where $t^2 = t + 1$.

The general consideration above gives

$$Q_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. $$

Solving quadratic equations (in the nondegenerate case) amounts to finding a preimage $x = (x_1, x_2)$ of $b = (b_1, b_2)$ in the 2-dimensional vectorspace \mathbb{F}_2^2 under A_2. This gives a system of 2 linear equations over \mathbb{F}_2:

$$\begin{pmatrix} x_2 \\ 0 \end{pmatrix} = A_2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}. $$

This is solvable if and only if $b_2 = 0$, and all (in fact two) solutions are

x_1 arbitrary (i.e. 0 or 1) and $x_2 = b_1$.

For later use we note that $\text{Tr}(t) = t + t^2 = 1$ and

$L_t = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$

The case $n = 3$

The field \mathbb{F}_8 has an \mathbb{F}_2-basis $\{1, s, s^2\}$ where $s^3 + s = 1$. The square map maps $1 \mapsto 1$, $s \mapsto s^2$, $s^2 \mapsto s^2 + s$. We have the matrices

$$Q_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad A_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}. $$

4
For preimages under the Artin-Schreier map we have the system of 3 linear equations
\[A_3x = b, \]
or
\[
\begin{pmatrix}
0 \\
x_2 + x_3 \\
x_2
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix}.
\]
It has a solution if and only if \(b_1 = 0 \), and then its two solutions are
\[x_1 \text{ arbitrary}, \quad x_2 = b_3, \quad x_3 = b_2 + b_3. \]

The case \(n = 4 \)

The field \(\mathbb{F}_{16} \) is an extension of \(\mathbb{F}_4 \) of degree 2 and has an \(\mathbb{F}_2 \)-basis \(\{1, t, u, tu\} \) where \(u^2 + u = t \). We have
\[
Q_4 = \begin{pmatrix} Q_2 & L_tQ_2 \\ 0 & Q_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\]
The system of 4 linear equations to solve becomes \(A_4x = b \), or
\[
\begin{pmatrix}
x_2 + x_4 \\
x_3 \\
x_4 \\
0
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
b_3 \\
b_4
\end{pmatrix}.
\]
It is solvable if and only if \(b_4 = 0 \), and then its two solutions are
\[x_1 \text{ arbitrary}, \quad x_2 = b_1 + b_3, \quad x_3 = b_2, \quad x_4 = b_3. \]

For use with \(\mathbb{F}_{256} \) we note that \(\text{Tr}(tu) = 1 \) and
\[
L_{tu} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \quad L_{tu}Q_4 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}.
\]

The case \(n = 5 \)

The field \(\mathbb{F}_{32} \) has an \(\mathbb{F}_2 \)-basis \(\{1, t, t^2, t^3, t^4\} \) with \(t^5 = t^2 + 1 \). Squaring maps \(1 \mapsto 1 \), \(t \mapsto t^2 \), \(t^2 \mapsto t^4 \), \(t^3 \mapsto t^3 + t \), \(t^4 \mapsto t^3 + t^2 + 1 \). Therefore
\[
Q_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad A_5 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}.
\]
The system $A_5 x = b$ of 5 linear equations is
\[
\begin{pmatrix}
 x_5 \\
 x_2 + x_4 \\
 x_2 + x_3 + x_5 \\
 x_5 \\
 x_3 + x_5
\end{pmatrix} =
\begin{pmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 b_4 \\
 b_5
\end{pmatrix}.
\]
It has a solution if and only if $b_1 = b_4$, and then its two solutions are
\[
x_1 \text{ arbitrary}, \quad x_2 = b_3 + b_5, \quad x_3 = b_1 + b_5, \quad x_4 = b_2 + b_3 + b_5, \quad x_5 = b_1.
\]

The case $n = 6$

The field \mathbb{F}_{64} is an extension of \mathbb{F}_8 of degree 2. Therefore—after choosing a suitable basis—we have
\[
Q_6 = \begin{pmatrix} Q_3 & Q_3 \\ 0 & Q_3 \end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 1 \\
 0 & 1 & 1 & 0 & 1 & 1 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}, \quad A_6 = \begin{pmatrix}
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 1 & 1 & 0 & 0 & 1 \\
 0 & 1 & 0 & 0 & 1 & 1 \\
 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 1 \\
 0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}.
\]

The system of 6 linear equations to solve becomes $A_6 x = b$, or
\[
\begin{pmatrix}
 x_4 \\
 x_2 + x_3 + x_6 \\
 x_2 + x_5 + x_6 \\
 0 \\
 x_3 + x_6 \\
 x_5
\end{pmatrix} =
\begin{pmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 b_4 \\
 b_5 \\
 b_6
\end{pmatrix}.
\]
It is solvable if and only if $b_4 = 0$, and then its two solutions are
\[
x_1 \text{ arbitrary}, \quad x_2 = b_3 + b_5, \quad x_3 = b_2 + b_3 + b_6, \quad x_4 = b_1, \quad x_5 = b_6, \quad x_6 = b_5 + b_6.
\]

The case $n = 8$

As a final example we consider \mathbb{F}_{256}, a quadratic extension of \mathbb{F}_{16}. It has a basis \{1, t, u, tu, v, tv, uv, tuv\} with t and u as in \mathbb{F}_{16} and $v^2 = v + tu$. By the general principle
and knowing L_{tu} we have

\[
Q_8 = \begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}, \quad
A_8 = \begin{pmatrix}
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.
\]

Solving for preimages of A_8 runs as before.