Theoretical Physics 5
 Advanced Quantum Mechanics
 Winter Semester 2018/2019 Exercise Sheet 11

lecturer: Prof. Dr. Pedro Schwaller return until: 2019-01-21
assistant: Eric Madge
30 points

The exercise sheets can be found online at http://www.staff.uni-mainz.de/pschwal/ index_1819.html.
To be handed in until Monday 2019-01-21 (12:30) to the red letterbox 42 (foyer of Staudingerweg 7).

1. The complex scalar field

Consider a complex scalar field ϕ with the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{\mu} \phi^{\dagger}\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{\dagger} \phi+\Omega_{0} . \tag{1}
\end{equation*}
$$

In the following you can treat ϕ and ϕ^{\dagger} as independent fields.
(a) (2 points) Find the conjugate fields to ϕ and ϕ^{\dagger}. Compute the Hamilton operator as a function of the fields and conjugate fields.
(b) (4 points) We now quantize the fields and expand ϕ as

$$
\phi(x)=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left(a_{\vec{p}} e^{-i p \cdot x}+b_{\vec{p}}^{\dagger} e^{i p \cdot x}\right)
$$

where $p \cdot x=p^{\mu} x_{\mu}, p^{\mu}=\left(E_{\vec{p}}, \vec{p}\right)$ and $E_{\vec{p}}=\sqrt{\vec{p}^{2}+m^{2}}$. Express $a_{\vec{p}}$ and $b_{\vec{p}}$ in terms of ϕ, ϕ^{\dagger}, and their conjugate fields.
(c) (4 points) The field operators obey the canonical equal-time commutation relations

$$
[\phi(t, \vec{x}), \pi(t, \vec{y})]=\left[\phi^{\dagger}(t, \vec{x}), \pi^{\dagger}(t, \vec{y})\right]=i \delta^{3}(\vec{x}-\vec{y}),
$$

where all other commutators at same times vanish. Determine the commutators of $a_{\vec{p}}^{(\dagger)}$ and $b_{\vec{p}}^{(\dagger)}$.
(d) (4 points) Diagonalize the Hamilton operator by expressing it in terms of the creation and annihilation operators $a_{\vec{p}}^{(\dagger)}$ and $b_{\vec{p}}^{(\dagger)}$. Which value does Ω_{0} have to take to let the vacuum energy vanish?
(e) (2 points) Show that ϕ satisfies the Heisenberg equations of motion.
(f) (4 points) Use the Heisenberg equations of motion to show that the charge

$$
\begin{equation*}
Q=Q_{0}+i \int \mathrm{~d}^{3} x\left(\phi^{\dagger}(x) \pi^{\dagger}(x)-\pi(x) \phi(x)\right) \tag{2}
\end{equation*}
$$

is conserved. Write the operator Q as a function of $a_{\vec{p}}$ and $b_{\vec{p}}$ and compute the charge of the states $a_{\vec{p}}^{\dagger}|0\rangle$ and $b_{\vec{p}}^{\dagger}|0\rangle$. Which value do you have to assign to Q_{0} if the vacuum is not charged?

2. Two real scalar fields

(a) (1 point) Express ϕ and ϕ^{\dagger} in the Lagrangian (1) of exercise 1 in terms of two real fields $\varphi_{1}=\frac{\phi+\phi^{\dagger}}{\sqrt{2}}$ and $\varphi_{2}=\frac{\phi-\phi^{\dagger}}{\sqrt{2} i}$, and show that this leads to the following Lagragian:

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \sum_{j=1}^{2}\left[\left(\partial_{\mu} \varphi_{j}\right)\left(\partial^{\mu} \varphi_{j}\right)-m^{2} \varphi_{j}^{2}\right]+\Omega_{0} \tag{3}
\end{equation*}
$$

(b) (1 point) Show that the equations of motions for ϕ and ϕ^{\dagger} from (1) and for φ_{1} and φ_{2} from (3) are equivalent.
(c) (1 point) Now we quantize the real fields:

$$
\varphi_{j}(x)=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left(c_{\vec{p}, j} e^{-i p \cdot x}+c_{\vec{p}, j}^{\dagger} e^{i p \cdot x}\right), \quad j=1,2
$$

where $\left[c_{\vec{p}, i}, c_{q, j}^{\dagger}\right]=(2 \pi)^{3} \delta^{3}(\vec{p}-\vec{q}) \delta_{i j}$. Express the ladder operators of the complex field from exercise 1 in terms of the ones of the real fields.
(d) (3 points) Rederive the commutator relations of the ladder operators of the complex field from exercise 1 from the commutators of $c_{\bar{p}, j}^{(\dagger)}$.
(e) (2 points) The Hamilton operator is given in terms of the ladder operators by

$$
H=\sum_{j=1}^{2} \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}} E_{\vec{p}}\left(c_{\vec{p}, j}^{\dagger} c_{\vec{p}, j}+\frac{1}{2}\left[c_{\vec{p}, j}, c_{\vec{p}, j}^{\dagger}\right]\right)-\int \mathrm{d}^{3} x \Omega_{0}
$$

Substitute the ladder operators in terms of the ones of the complex field and show that you obtain the same result as in exercise 1 .
(f) (2 points) Write the charge operator (2) in terms of $c_{\vec{p}, j}^{(\dagger)}$. Are $c_{\vec{p}, 1}^{\dagger}|0\rangle$ and $c_{\vec{p}, 2}^{\dagger}|0\rangle$ eigenstates of this operator?

