Theoretical Physics 5
 Advanced Quantum Mechanics
 Winter Semester 2018/2019 Exercise Sheet 12

lecturer: Prof. Dr. Pedro Schwaller
return until: 2019-01-28
assistant: Eric Madge
30 points

The exercise sheets can be found online at http://www.staff.uni-mainz.de/pschwal/ index_1819.html.
To be handed in until Monday 2019-01-28 (12:30) to the red letterbox 42 (foyer of Staudingerweg 7).

1. Standard representation of the Dirac matrices
(3 points)
The Dirac matrices γ^{μ} with $\mu=0, \ldots, 3$ in standard representation are given by

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

where σ^{i} for $i=1,2,3$ are the Pauli matrices. Show that the matrices defined above satisfy the defining equation of the Dirac matrices $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \mathbb{1}_{4}$.
Hint: The Pauli matrices satisfy the identity $\sigma^{i} \sigma^{j}=i \epsilon^{i j k} \sigma^{k}+\delta^{i j} \mathbb{1}_{2}$.
2. Clifford algebra of the Dirac matrices

We consider the Clifford algebra of the Dirac matrices which satisfy $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=$ $2 \eta^{\mu \nu} \mathbb{1}_{4}$. Furthermore, we define the matrix $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$, which satisfies $\left\{\gamma^{5}, \gamma^{\mu}\right\}=$ 0 and $\left(\gamma^{5}\right)^{2}=\mathbb{1}_{4}$.
(a) (2 points) Derive the representation $\gamma^{5}=\frac{i}{4!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$, where the LeviCivita symbol is anti-symmetric with respect to index permutations and $\epsilon_{0123}=1$.
(b) Show the following trace identities.
i. (1 point) $\operatorname{Tr}\left(\gamma^{\mu}\right)=0$
ii. (3 points) $\operatorname{Tr}\left(\gamma^{5}\right)=\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu}\right)=0$
iii. (2 points) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \eta^{\mu \nu}$
iv. (3 points) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4\left(\eta^{\mu \nu} \eta^{\rho \sigma}-\eta^{\mu \rho} \eta^{\nu \sigma}+\eta^{\mu \sigma} \eta^{\nu \rho}\right)$
v. (3 points) $\operatorname{Tr}\left(\gamma^{\mu_{1}} \ldots \gamma^{\mu_{2 n+1}}\right)=\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu_{1}} \ldots \gamma^{\mu_{2 n+1}}\right)=0$
(c) (3 points) Show that the matrices

$$
\Gamma_{S}=\mathbb{1}_{4}, \quad \Gamma_{P}=\gamma^{5}, \quad \Gamma_{V}^{\mu}=\gamma^{\mu}, \quad \Gamma_{A}^{\mu}=\gamma^{\mu} \gamma^{5}, \quad \Gamma_{T}^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]=-\Gamma_{T}^{\nu \mu}
$$

are linearly independent and thereby form a basis of the complex 4×4 matrices. To do so, represent the zero-matrix as a general linear combination

$$
A=a \Gamma_{S}+b \Gamma_{P}+c_{\mu} \Gamma_{V}^{\mu}+d_{\mu} \Gamma_{A}^{\mu}+e_{\mu \nu} \Gamma_{T}^{\mu \nu}
$$

with $e_{\mu \nu}=-e_{\nu \mu}$ and deduce that the coefficients vanish by multiplying by suitable Γ matrices and taking the trace.

Hint:

Only use the properties given in the task and no explicit representation. It may help to insert a $\mathbb{1}_{4}$ within a trace, to rewrite it as a square of a Dirac matrix, and to move a factor within a trace using the anti-commutation relations and the cyclic invariance of the trace.

3. Feynman slash notation

In the lecture we introduced the Feynman slash notation $\not p=p_{\mu} \gamma^{\mu}$.
(a) (2 points) Show that $\left(\not p+m \mathbb{1}_{4}\right)\left(\not p-m \mathbb{1}_{4}\right)=\left(p^{2}-m^{2}\right) \mathbb{1}_{4}$.
(b) (2 points) Derive the following identity:

$$
\operatorname{Tr}\left[\left(\not p-m \mathbb{1}_{4}\right) \gamma^{\mu}\left(q+m \mathbb{1}_{4}\right) \gamma^{\nu}\right]=4\left[p^{\mu} q^{\nu}+p^{\nu} q^{\mu}-\eta^{\mu \nu}\left(p \cdot q+m^{2}\right)\right]
$$

4. Spin sums of Dirac spinors

(6 points)
The solutions of the Dirac equation are constructed in the standard representation using the spinors

$$
u_{s}(p)=\frac{1}{\sqrt{p^{0}+m}}\binom{\left(p^{0}+m\right) \chi_{s}}{(\vec{\sigma} \cdot \vec{p}) \chi_{s}}, \quad v_{s}(p)=\frac{1}{\sqrt{p^{0}+m}}\binom{(\vec{\sigma} \cdot \vec{p}) \phi_{s}}{\left(p^{0}+m\right) \phi_{s}}
$$

with $s= \pm \frac{1}{2}$. The Weyl spinors χ_{s} and ϕ_{s} satisfy the completeness relations

$$
\sum_{s= \pm \frac{1}{2}} \chi_{s} \chi_{s}^{\dagger}=\mathbb{1}_{2}, \quad \sum_{s= \pm \frac{1}{2}} \phi_{s} \phi_{s}^{\dagger}=\mathbb{1}_{2}
$$

Derive the spin sums

$$
\sum_{s= \pm \frac{1}{2}} u_{s}(p) \bar{u}_{s}(p)=\not p+m \mathbb{1}_{4}, \quad \sum_{s= \pm \frac{1}{2}} v_{s}(p) \bar{v}_{s}(p)=\not p-m \mathbb{1}_{4} .
$$

$\bar{\psi}=\psi^{\dagger} \gamma^{0}$ here describes the Dirac conjugate spinor of ψ.
Hint: Use what you learned in exercises 1 and 3 .

