Theoretical Physics 5 Advanced Quantum Mechanics Winter Semester 2018/2019 Exercise Sheet 13

lecturer: Prof. Dr. Pedro Schwaller assistant: Eric Madge return until: 2019-02-04 30 points

The exercise sheets can be found online at http://www.staff.uni-mainz.de/pschwal/ index_1819.html.

To be handed in until Monday 2019-02-04 (12:30) to the red letterbox 42 (foyer of Staudingerweg 7).

1. Decay of a scalar particle

Consider the theory of a real scalar particle ρ with mass M coupled to a complex scalar particle ϕ with mass m. In the following, assume that M > 2m. The corresponding

Lagrangian is given by

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \rho \, \partial^{\mu} \rho - M^2 \rho^2 \right) + \partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi - m^2 \phi^{\dagger} \phi - \kappa \, \rho \, \phi^{\dagger} \phi \,.$$

(a) (1 point) Show that the corresponding Hamilton operator can be written as $H = H_0 + H_{\text{int}}$, where $H_0 = H_0^{\rho} + H_0^{\phi}$ includes the Hamilton operators of the free fields and $H_{\text{int}} = \kappa \int d^3x \rho \, \phi^{\dagger} \phi$ describes the interactions of the fields.

We now work in the interaction picture and quantize the fields,

$$\begin{split} \phi(x) &= \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2 E_{\vec{p},m}}} \left(a_{\vec{p}} e^{-i p_{\nu} x^{\nu}} + b_{\vec{p}}^{\dagger} e^{i p_{\nu} x^{\nu}} \right) \,, \\ \rho(x) &= \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2 E_{\vec{p},M}}} \left(c_{\vec{p}} e^{-i p_{\nu} x^{\nu}} + c_{\vec{p}}^{\dagger} e^{i p_{\nu} x^{\nu}} \right) \,, \end{split}$$

where $E_{\vec{p},m_i} = \sqrt{(\vec{p}\,)^2 + m_i^2}$ and $p^{\mu} = (E_{\vec{p},m_i},\vec{p}\,)$ for $i = \rho, \phi$ with $m_{\rho} = M, m_{\phi} = m$. From the lecture you know that the scattering matrix element from an initial state $|i\rangle$ at $t = -\infty$ to a final state $|f\rangle$ at $t = +\infty$ is given by

$$S_{fi} = \langle f|S|i\rangle = \langle f|T\exp\left(-i\int_{-\infty}^{\infty} \mathrm{d}t \, H_{\mathrm{int}}(t)\right)|i\rangle$$

(b) (6 points) Consider the decay $\rho \to \phi^{\dagger} \phi$. Compute the *S* matrix element for $|i\rangle = \sqrt{2 E_{\vec{p}_1,M}} c^{\dagger}_{\vec{p}_1} |0\rangle$ and $|f\rangle = \sqrt{2 E_{\vec{p}_2,m}} \sqrt{2 E_{\vec{p}_3,m}} a^{\dagger}_{\vec{p}_2} b^{\dagger}_{\vec{p}_3} |0\rangle$ to leading order in κ .

(20 points)

(c) (5 points) The decay width of a particle of mass M into n particles in its rest frame is given by

$$\Gamma = \frac{1}{2M} \int \left(\prod_{j} \frac{\mathrm{d}^3 p_j}{(2\pi)^3} \frac{1}{2E_{\vec{p}_j, m_j}} \right) (2\pi)^4 \delta^4 (P - \sum_{j} p_j) \, |\mathcal{A}(i \to f)|^2$$

where $\mathcal{A}(i \to f) = \langle f | T | i \rangle$ with $S = 1 + i (2\pi)^4 \delta^4 (P - \sum_j p_j) T$. *P* is the four momentum of the decaying particle and the index *j* runs over all decay products. Compute the decay width from the matrix element calculated above.

(d) (6 points) Let us now add another real scalar particle σ with mass $m_{\sigma} < M/2$ to our theory, which interacts with ρ via the term $\mathcal{L} \supset -\frac{\kappa'}{2} \rho \sigma^2$. Calculate the decay width for the decay $\rho \to 2\sigma$. Note that you need to include a symmetry factor $\frac{1}{2}$ in the equation for the decay width for a decay into two identical particles.

We now identify ρ with the short-lived neutral Kaon K_S^0 , $\phi^{(\dagger)}$ with the charged pions π^{\pm} , and σ with the neutral pion π^0 . The corresponding masses are $m_{K^0} = 498$ MeV, $m_{\pi^{\pm}} = 140$ MeV, $m_{\pi^0} = 135$ MeV. Further assume that $\kappa' = \kappa$.

(e) (1 point) Compute the branching ratios

$$\operatorname{Br}_{\pi^+\pi^-} = \frac{\Gamma(K_S^0 \to \pi^+\pi^-)}{\Gamma_{\operatorname{tot}}} \quad \text{and} \quad \operatorname{Br}_{2\pi^0} = \frac{\Gamma(K_S^0 \to 2\pi^0)}{\Gamma_{\operatorname{tot}}}$$

with the total decay width $\Gamma_{\rm tot} = \Gamma(K_S^0 \to \pi^+\pi^-) + \Gamma(K_S^0 \to 2\pi^0).$

(f) (1 point) The life time of a particle is given by $\tau = 1/\Gamma_{\text{tot}}$. Which value do you have to assign to κ (in eV) to obtain the literature value $\tau_{K_s^0} = 90 \text{ ps}$?

2. Spontaneous symmetry breaking

(10 points)

Spontaneous symmetry breaking is an important subject. A simple classical example that demonstrates spontaneous symmetry breaking is described by the Lagrangian for a scalar with a negative mass term:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4 \, .$$

- (a) (3 points) How many constants v can you find for which $\phi(x) = v$ is a solution to the equations of motion? Which solution has the lowest energy density (the ground state)?
- (b) (2 points) The Lagrangian has a symmetry under $\phi \to -\phi$. Show that this symmetry is not respected by the ground state. We say the vacuum expectation value of ϕ is v, and write $\langle \phi \rangle = v$. In this vacuum, the \mathbb{Z}_2 symmetry $\phi \to -\phi$ is spontaneously broken.
- (c) (5 points) Write $\phi(x) = v + \pi(x)$ and substitute back into the Lagrangian. Show that now $\pi = 0$ is a solution to the equations of motion. How does π transform under the \mathbb{Z}_2 symmetry $\phi \to -\phi$? Show that this is a symmetry of π 's Lagrangian.