Theoretical Physics 5
 Advanced Quantum Mechanics
 Winter Semester 2018/2019 Exercise Sheet 13

lecturer: Prof. Dr. Pedro Schwaller return until: 2019-02-04
assistant: Eric Madge
30 points
The exercise sheets can be found online at http://www.staff.uni-mainz.de/pschwal/ index_1819.html.
To be handed in until Monday 2019-02-04 (12:30) to the red letterbox 42 (foyer of Staudingerweg 7).

1. Decay of a scalar particle

(20 points)
Consider the theory of a real scalar particle ρ with mass M coupled to a complex scalar particle ϕ with mass m. In the following, assume that $M>2 m$. The corresponding Lagrangian is given by

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \rho \partial^{\mu} \rho-M^{2} \rho^{2}\right)+\partial_{\mu} \phi^{\dagger} \partial^{\mu} \phi-m^{2} \phi^{\dagger} \phi-\kappa \rho \phi^{\dagger} \phi .
$$

(a) (1 point) Show that the corresponding Hamilton operator can be written as $H=H_{0}+H_{\text {int }}$, where $H_{0}=H_{0}^{\rho}+H_{0}^{\phi}$ includes the Hamilton operators of the free fields and $H_{\text {int }}=\kappa \int \mathrm{d}^{3} x \rho \phi^{\dagger} \phi$ describes the interactions of the fields.

We now work in the interaction picture and quantize the fields,

$$
\begin{aligned}
& \phi(x)=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}, m}}}\left(a_{\vec{p}} e^{-i p_{\nu} x^{\nu}}+b_{\vec{p}}^{\dagger} e^{i p_{\nu} x^{\nu}}\right), \\
& \rho(x)=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}, M}}}\left(c_{\vec{p}} e^{-i p_{\nu} x^{\nu}}+c_{\vec{p}}^{\dagger} e^{i p_{\nu} x^{\nu}}\right),
\end{aligned}
$$

where $E_{\vec{p}, m_{i}}=\sqrt{(\vec{p})^{2}+m_{i}^{2}}$ and $p^{\mu}=\left(E_{\vec{p}, m_{i}}, \vec{p}\right)$ for $i=\rho, \phi$ with $m_{\rho}=M, m_{\phi}=m$. From the lecture you know that the scattering matrix element from an initial state $|i\rangle$ at $t=-\infty$ to a final state $|f\rangle$ at $t=+\infty$ is given by

$$
S_{f i}=\langle f| S|i\rangle=\langle f| T \exp \left(-i \int_{-\infty}^{\infty} \mathrm{d} t H_{\mathrm{int}}(t)\right)|i\rangle .
$$

(b) (6 points) Consider the decay $\rho \rightarrow \phi^{\dagger} \phi$. Compute the S matrix element for $|i\rangle=\sqrt{2 E_{\vec{p}_{1}, M}} c_{\vec{p}_{1}}^{\dagger}|0\rangle$ and $|f\rangle=\sqrt{2 E_{\vec{p}_{2}, m}} \sqrt{2 E_{\vec{p}_{3}, m}} a_{\vec{p}_{2}}^{\dagger} b_{\vec{p}_{3}}^{\dagger}|0\rangle$ to leading order in κ.
(c) (5 points) The decay width of a particle of mass M into n particles in its rest frame is given by

$$
\Gamma=\frac{1}{2 M} \int\left(\prod_{j} \frac{\mathrm{~d}^{3} p_{j}}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}_{j}, m_{j}}}\right)(2 \pi)^{4} \delta^{4}\left(P-\sum_{j} p_{j}\right)|\mathcal{A}(i \rightarrow f)|^{2}
$$

where $\mathcal{A}(i \rightarrow f)=\langle f| T|i\rangle$ with $S=1+i(2 \pi)^{4} \delta^{4}\left(P-\sum_{j} p_{j}\right) T . P$ is the four momentum of the decaying particle and the index j runs over all decay products. Compute the decay width from the matrix element calculated above.
(d) (6 points) Let us now add another real scalar particle σ with mass $m_{\sigma}<M / 2$ to our theory, which interacts with ρ via the term $\mathcal{L} \supset-\frac{\kappa^{\prime}}{2} \rho \sigma^{2}$. Calculate the decay width for the decay $\rho \rightarrow 2 \sigma$. Note that you need to include a symmetry factor $\frac{1}{2}$ in the equation for the decay width for a decay into two identical particles.

We now identify ρ with the short-lived neutral Kaon $K_{S}^{0}, \phi^{(\dagger)}$ with the charged pions $\pi^{ \pm}$, and σ with the neutral pion π^{0}. The corresponding masses are $m_{K^{0}}=498 \mathrm{MeV}$, $m_{\pi^{ \pm}}=140 \mathrm{MeV}, m_{\pi^{0}}=135 \mathrm{MeV}$. Further assume that $\kappa^{\prime}=\kappa$.
(e) (1 point) Compute the branching ratios

$$
\operatorname{Br}_{\pi^{+} \pi^{-}}=\frac{\Gamma\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma_{\text {tot }}} \quad \text { and } \quad \operatorname{Br}_{2 \pi^{0}}=\frac{\Gamma\left(K_{S}^{0} \rightarrow 2 \pi^{0}\right)}{\Gamma_{\text {tot }}}
$$

with the total decay width $\Gamma_{\text {tot }}=\Gamma\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(K_{S}^{0} \rightarrow 2 \pi^{0}\right)$.
(f) (1 point) The life time of a particle is given by $\tau=1 / \Gamma_{\text {tot }}$. Which value do you have to assign to $\kappa($ in eV$)$ to obtain the literature value $\tau_{K_{S}^{0}}=90 \mathrm{ps}$?

2. Spontaneous symmetry breaking

(10 points)
Spontaneous symmetry breaking is an important subject. A simple classical example that demonstrates spontaneous symmetry breaking is described by the Lagrangian for a scalar with a negative mass term:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4} .
$$

(a) (3 points) How many constants v can you find for which $\phi(x)=v$ is a solution to the equations of motion? Which solution has the lowest energy density (the ground state)?
(b) (2 points) The Lagrangian has a symmetry under $\phi \rightarrow-\phi$. Show that this symmetry is not respected by the ground state. We say the vacuum expectation value of ϕ is v, and write $\langle\phi\rangle=v$. In this vacuum, the \mathbb{Z}_{2} symmetry $\phi \rightarrow-\phi$ is spontaneously broken.
(c) (5 points) Write $\phi(x)=v+\pi(x)$ and substitute back into the Lagrangian. Show that now $\pi=0$ is a solution to the equations of motion. How does π transform under the \mathbb{Z}_{2} symmetry $\phi \rightarrow-\phi$? Show that this is a symmetry of π 's Lagrangian.

