Theoretical Physics 5
 Advanced Quantum Mechanics
 Winter Semester 2018/2019 Exercise Sheet 1

lecturer: Prof. Dr. Pedro Schwaller
return until: 2018-10-22
assistant: Eric Madge
30 points

The exercise sheets can be found online at http://www.staff.uni-mainz.de/pschwal/ index_1819.html.
To be handed in until Monday 2018-10-22 (12:00) to the red letterbox 42 (foyer of Staudingerweg 7).

1. Single-particle Hilbert space

(5 points)
Let $\{|x, i\rangle\}$ be an orthonormal basis of a single-particle Hilbert space $V_{1} . x$ is a continuous index and i is discrete.
(a) (1 point) Which value does the scalar product of two basis elements take?
(b) (1 point) State the completeness relation with respect to the given basis.
(c) (3 points) Expand the states $|\psi\rangle$ and $|\chi\rangle$ in terms of the basis elements. How do you obtain the coefficients of the expansion? Write the scalar product $\langle\psi \mid \chi\rangle$ in terms of the coefficients. Which condition must hold for the coefficients in order for $|\psi\rangle$ to be a normalized state?

2. N-particle Hilbert space

(8 points)
Let us construct a Hilbert space of N identical particles

$$
V_{N}=V_{1} \otimes \cdots \otimes V_{1} .
$$

We define N-particle states that decompose into products of single-particle states as follows:

$$
\left|\alpha_{(N)}\right\rangle=\left|\alpha_{1}, \ldots, \alpha_{N}\right\rangle=\left|\alpha_{1}\right\rangle_{1} \otimes \cdots \otimes\left|\alpha_{N}\right\rangle_{N} .
$$

V_{N} is defined as the space of all linear combinations of such product states.
(a) (1 point) Express the scalar product of two product states $\left|\psi_{(N)}\right\rangle$ and $\left|\chi_{(N)}\right\rangle$ in terms of single-particle scalar products.
(b) (1 point) Write down the scalar product of two general states $\left|\psi_{(N)}\right\rangle$ and $\left|\chi_{(N)}\right\rangle$ expressing $\left|\psi_{(N)}\right\rangle$ and $\left|\chi_{(N)}\right\rangle$ as linear combinations of product states.
(c) (1 point) Construct an orthonormal basis for V_{N} using the basis of V_{1}
(d) (1 point) State the completeness relation with respect to the constructed basis.
(e) (4 points) Expand a state $\left|\psi_{(N)}\right\rangle$ with respect to the basis. How do you obtain the coefficients of the expansion? Which condition must hold for the coefficients in order for $\left|\psi_{(N)}\right\rangle$ to be a normalized state? What do you obtain for the coefficients if $\left|\psi_{(N)}\right\rangle$ is a product state?

3. The permutation group

Let S_{N} be the group of permutations of N objects and $\sigma \in S_{N}$.
(a) (2 points) How many elements does the group S_{N} contain? How many elements does the subgroup of even permutations $(\operatorname{sign}(\sigma)=+1)$ contain? (This subgroup is called the alternating group.)
(b) (6 points) The quantum operator $\hat{\sigma}$ associated with the permutation σ acts on a product state of N particles as follows,

$$
\hat{\sigma}\left[\psi_{1}\left(x_{1}\right) \ldots \psi_{N}\left(x_{N}\right)\right]=\psi_{\sigma(1)}\left(x_{1}\right) \ldots \psi_{\sigma(N)}\left(x_{N}\right) .
$$

Since product states form a basis of the N-particle Hilbert space, the action of $\hat{\sigma}$ on arbitrary states is defined by linearity. The quantum mechanical symmetrization and anti-symmetrization operators Sym and Asym are defined by

$$
\operatorname{Sym}=N_{S} \sum_{\sigma \in S_{N}} \hat{\sigma}, \quad \operatorname{Asym}=N_{A} \sum_{\sigma \in S_{N}} \operatorname{sign}(\sigma) \hat{\sigma},
$$

where N_{S}, N_{A} are normalization factors. Determine N_{S}, N_{A} such that Sym and Asym are projection operators, i.e. $\mathrm{Sym}^{2}=\mathrm{Sym}, \mathrm{Asym}^{2}=$ Asym. Show that Sym Asym $=$ Asym Sym $=0$. Does the relation Sym + Asym $\stackrel{?}{=} 1$ hold?
(c) (4 points) Determine the normalization factor C_{S} for symmetric N-particle wave functions

$$
\psi_{c_{1} \ldots c_{N}}^{(s)}\left(x_{1}, \ldots, x_{N}\right)=C_{S} \sum_{\sigma \in S_{N}} \psi_{\sigma\left(c_{1}\right)}\left(x_{1}\right) \ldots \psi_{\sigma\left(c_{N}\right)}\left(x_{N}\right)
$$

where the single-particle wave functions $\psi_{c}(x)$ fulfill the following orthonormalization relation:

$$
\int \mathrm{d} x \psi_{b}(x)^{*} \psi_{c}(x)=\delta_{b c}
$$

We assume that all c_{i} are different.
(d) (5 points) Let the dimension of a single-particle Hilbert space V_{1} be $(2 s+1)$ (this is for instance the case for localized particles with spin s). Compute the dimension of the following spaces:
i. the Hilbert space of product states $V_{N}=V_{1} \otimes \cdots \otimes V_{1}$ of N particles;
ii. the Hilbert space of symmetric states (bosons) Sym V_{N};
iii. the Hilbert space of antisymmetric states (fermions) Asym V_{N}.

