Theoretical Physics 5
 Advanced Quantum Mechanics
 Winter Semester 2018/2019
 Exercise Sheet 3

lecturer: Prof. Dr. Pedro Schwaller
return until: 2018-11-12
assistant: Eric Madge

The exercise sheets can be found online at http://www.staff.uni-mainz.de/pschwal/ index_1819.html.
To be handed in until Monday 2018-11-12 (12:30) to the red letterbox 42 (foyer of Staudingerweg 7).

1. Electrons in a finite volume

(15 points)
The purpose of this exercise is to study the contribution to the Hamilton operator of a gas of N electrons enclosed in a finite cubic volume with edge length L in occupation number representation. As basis states, plane waves $|\vec{k}\rangle$ normalized to the volume L^{3},

$$
\psi_{\vec{k}}(\vec{x})=\langle\vec{x} \mid \vec{k}\rangle=\frac{1}{L^{3 / 2}} \exp (i \vec{k} \cdot \vec{x})
$$

corresponding to quantized momenta $\vec{p}=\hbar \vec{k}=\frac{2 \pi \hbar \vec{\nu}}{L}, \vec{\nu} \in \mathbb{Z}^{3}$ can be used. The corresponding creation and annihilation operators are denoted by $\hat{a}_{\vec{k}}^{\dagger}$ and $\hat{a}_{\vec{k}}$ and satisfy $\left\{\hat{a}_{\vec{k}}, \hat{a}_{\vec{k}^{\prime}}^{\dagger}\right\}=\delta_{\vec{k} \vec{k}^{\prime}}$. Spin degrees of freedom are not taken into consideration.
(a) (3 points) Show that

$$
\hat{\phi}(\vec{x})=\frac{1}{L^{3 / 2}} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{x}} \hat{a}_{\vec{k}} .
$$

(b) (5 points) The operator 'kinetic energy' in position space is given by $\hat{T}=$ $-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \Delta_{\vec{x}_{i}}$. Show that the corresponding operator in occupation number representation can be written as

$$
\hat{T}=\sum_{\vec{k}} \frac{\hbar^{2} \vec{k}^{2}}{2 m} \hat{a}_{\vec{k}}^{\dagger} \hat{a}_{\vec{k}}
$$

(c) (7 points) The interaction of the electrons amongst themselves depends only on the distance $\left|\vec{x}_{i}-\vec{x}_{j}\right|$ and is given in coordinate representation by

$$
\hat{V}=\frac{1}{2} \sum_{\substack{i, j=1 \\ i \neq j}}^{N} V\left(\left|\vec{x}_{i}-\vec{x}_{j}\right|\right) .
$$

Derive the following form in occupation number representation:

$$
\hat{V}=\frac{1}{2 L^{3}} \sum_{\vec{k}, \overrightarrow{k^{\prime}}, \vec{q}} \tilde{V}(\vec{q}) \hat{a}_{\vec{k}+\vec{q}}^{\dagger} \hat{a}_{\vec{k}^{\prime}-\vec{q}}^{\dagger} \hat{a}_{\vec{k}^{\prime}} \hat{a}_{\vec{k}}, \quad \tilde{V}(\vec{q}) \equiv \int_{L^{3}} \mathrm{~d}^{3} x V(|\vec{x}|) e^{-i \vec{q} \cdot \vec{x}} .
$$

2. Para-helium

(15 points)
In this exercise we consider the ground state energy of the electron pair in a helium atom with infinitely heavy nucleus. The corresponding two-electron Hamilton operator is given by $H=H_{0}+\Delta H$ with

$$
H_{0}=\frac{\left(\vec{p}_{1}\right)^{2}}{2 m}-\frac{Z e^{2}}{r_{1}}+\frac{\left(\vec{p}_{2}\right)^{2}}{2 m}-\frac{Z e^{2}}{r_{2}}, \quad \Delta H=\frac{e^{2}}{\left|\vec{x}_{1}-\vec{x}_{2}\right|}, \quad r_{i}=\left|\vec{x}_{i}\right| \text { for } i=1,2 .
$$

States in which the electron spins are anti-parallel ($S=0$, spin-singlet) are called para-helium, whereas ortho-helium denotes states with parallel spin ($S=1$, spintriplet).
(a) (13 points) Calculate the correction to the ground state energy of para-helium to first order in perturbation theory with respect to the perturbation ΔH. All intergrals have to be solved by hand.
(b) (2 points) Calculate the numerical value of the correction.

Hints:

The normalized position-space wave function of the ground state of the single-electron atom with infinitely heavy nucleus with atomic number Z and Hamilton operator

$$
H^{(1)}=\frac{(\vec{p})^{2}}{2 m}-\frac{Z e^{2}}{r} \quad r=|\vec{x}|
$$

is given by

$$
\psi_{100}(r)=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{B}}\right)^{\frac{3}{2}} \exp \left(-\frac{Z r}{a_{B}}\right)
$$

where a_{B} is the Bohr radius. For the evaluation of the occurring integrals use the multipole expansion of the distance

$$
\begin{aligned}
\frac{1}{\left|\vec{x}_{1}-\vec{x}_{2}\right|} & =\frac{1}{\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos (\alpha)}}=\sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}(\cos \alpha) \\
& =\sum_{l=0}^{\infty} \frac{r_{<}^{l}}{r_{>}^{l+1}} \frac{4 \pi}{2 l+1} \sum_{m=-l}^{l} Y_{l m}^{*}\left(\theta_{1}, \phi_{1}\right) Y_{l m}\left(\theta_{2}, \phi_{2}\right)
\end{aligned}
$$

with $r_{<}=\min \left(r_{1}, r_{2}\right)$ and $r_{>}=\max \left(r_{1}, r_{2}\right)$ as well as the orthogonality relation of the spherical harmonics

$$
\int \mathrm{d} \Omega Y_{l^{\prime} m^{\prime}}^{*}(\theta, \phi) Y_{l m}(\theta, \phi)=\delta_{l^{\prime} l^{\prime}} \delta_{m^{\prime} m}
$$

To solve the integrals you might use

$$
Y_{00}(\theta, \phi)=\frac{1}{\sqrt{4 \pi}}
$$

in combination with the orthogonality relation mentioned above.

