Theoretical Physics 5
 Advanced Quantum Mechanics
 Winter Semester 2018/2019
 Exercise Sheet 4

lecturer: Prof. Dr. Pedro Schwaller return until: 2018-11-19
assistant: Eric Madge
30 points
The exercise sheets can be found online at http://www.staff.uni-mainz.de/pschwal/ index_1819.html.
To be handed in until Monday 2018-11-19 (12:30) to the red letterbox 42 (foyer of Staudingerweg 7).

1. Bogoliubov transformation

(15 points)
Consider a dilute gas of weakly interacting bosons at low temperature in a finite volume V. In the Bogoliubov approximation, the corresponding Hamiltonian is given by

$$
\begin{equation*}
\hat{H}=\sum_{\vec{p} \neq 0} \frac{p^{2}}{2 m} \hat{a}_{\vec{p}}^{\dagger} \hat{a}_{\vec{p}}+\frac{N^{2}}{2 V} \tilde{V}_{0}^{(2)}+\frac{N}{2 V} \sum_{\vec{p} \neq \overrightarrow{0}} \tilde{V}^{(2)}(\vec{p})\left(\hat{a}_{\vec{p}}^{\dagger} \hat{a}_{-\vec{p}}^{\dagger}+2 \hat{a}_{\vec{p}}^{\dagger} \hat{a}_{\vec{p}}+\hat{a}_{\vec{p}} \hat{a}_{-\vec{p}}\right), \tag{1}
\end{equation*}
$$

where $\hat{a}_{\vec{p}}^{\dagger}$ and $\hat{a}_{\vec{p}}$ are bosonic creation and annihilation operators in momentum space. Let further $\tilde{V}^{(2)}(\vec{p})$ be the two-particle-interaction potential with $\tilde{V}^{(2)}(\vec{p})=\tilde{V}^{(2)}(-\vec{p})$ and $\tilde{V}_{0}^{(2)}=\tilde{V}^{(2)}(\overrightarrow{0})$. The Bogoliubov transformation of the ladder operators is given by

$$
\begin{align*}
& \hat{b}_{\vec{p}}=u_{\vec{p}} \hat{a}_{\vec{p}}+v_{\vec{p}} \hat{a}_{-\vec{p}}^{\dagger}, \tag{2}\\
& \hat{b}_{\vec{p}}^{\dagger}=u_{\vec{p}}^{*} a_{\vec{p}}^{\dagger}+v_{\vec{p}}^{*} \hat{a}_{-\vec{p}}
\end{align*}
$$

where $u_{\vec{p}}$ and $v_{\vec{p}}$ are complex numbers with

$$
u_{\vec{p}}=u_{-\vec{p}}, \quad v_{\vec{p}}=v_{-\vec{p}}, \quad\left|u_{\vec{p}}\right|^{2}-\left|v_{\vec{p}}\right|^{2}=1 .
$$

(a) (3 points) Calculate the following commutators:
i. $\left[\hat{b}_{\vec{p}}, \hat{b}_{\vec{q}}\right]$
ii. $\left[\hat{b}_{\vec{p}}^{\dagger}, \hat{b}_{\vec{q}}^{\dagger}\right]$
iii. $\left[\hat{b}_{\vec{p}}, \hat{b}_{\vec{q}}^{\dagger}\right]$
(b) (2 points) Calculate the inverse transformation of (2), i.e. express $\hat{a}_{\vec{p}}^{\dagger}$ and $\hat{a}_{\vec{p}}$ in terms of $\hat{b}_{\vec{p}}^{\dagger}$ and $\hat{b}_{\vec{p}}$.
(c) (3 points) In the following assume that the coefficients $u_{\vec{p}}$ and $v_{\vec{p}}$ are real. Express the Hamilton operator \hat{H} in terms of the transformed ladder operators $\hat{b}_{\vec{p}}^{\dagger}$ and $\hat{b}_{\vec{p}}$. Show that the Bogoliubov transformation diagonalizes the Hamilton operator (i.e. that terms proportional to $\hat{b}_{\vec{p}}^{\dagger} \hat{b}_{-\vec{p}}^{\dagger}$ and $\hat{b}_{\vec{p}} \hat{b}_{-\vec{p}}$ vanish) if

$$
\begin{equation*}
u_{\vec{p}} v_{\vec{p}} \frac{p^{2}}{2 m}-\frac{1}{2}\left(u_{\vec{p}}-v_{\vec{p}}\right)^{2} \frac{N}{V} \tilde{V}^{(2)}(\vec{p})=0 . \tag{3}
\end{equation*}
$$

(d) (2 points) Show that (3) leads to

$$
\begin{equation*}
u_{\vec{p}}^{2}\left(u_{\vec{p}}^{2}-1\right)=\frac{\left(\frac{N}{V} \tilde{V}^{(2)}(\vec{p})\right)^{2}}{4 E_{\vec{p}}^{2}} \tag{4}
\end{equation*}
$$

and determine $E_{\vec{p}}^{2}$.
(e) (5 points) Use equation (4) to derive expressions for $u_{\vec{p}}^{2}, v_{\vec{p}}^{2}$ and $u_{\vec{p}} v_{\vec{p}}$, and show that the Hamilton operator takes the following form:

$$
\hat{H}=\frac{N^{2}}{2 V} \tilde{V}_{0}^{(2)}+\frac{1}{2} \sum_{\vec{p} \neq \overrightarrow{0}}\left(E_{\vec{p}}-\frac{p^{2}}{2 m}-\frac{N}{V} \tilde{V}^{(2)}(\vec{p})\right)+\sum_{\vec{p} \neq \overrightarrow{0}} E_{\vec{p}} \hat{b}_{\vec{p}}^{\dagger} \hat{b}_{\vec{p}} .
$$

Determine the ground state energy.

2. Photon correlation

(15 points)
Consider a two-boson state

$$
\left|\Psi_{(2)}\right\rangle=\int \mathrm{d}^{3} x_{1} \mathrm{~d}^{3} x_{2} \psi\left(\vec{x}_{1}, \vec{x}_{2}\right) \hat{\phi}^{\dagger}\left(\vec{x}_{1}\right) \hat{\phi}^{\dagger}\left(\vec{x}_{2}\right)|0\rangle
$$

with

$$
\psi\left(\vec{x}_{1}, \vec{x}_{2}\right)=c \psi_{1}\left(\vec{x}_{1}\right) \psi_{2}\left(\vec{x}_{2}\right), \quad c \in \mathbb{C}, \quad \int \mathrm{~d}^{3} x\left|\psi_{i}(\vec{x})\right|^{2}=1
$$

(a) (2 points) Show that the normalization condition $\left\langle\Psi_{(2)} \mid \Psi_{(2)}\right\rangle=1$ leads to the following normalization of the function $\psi\left(\vec{x}_{1}, \vec{x}_{2}\right)$:

$$
\psi\left(\vec{x}_{1}, \vec{x}_{2}\right)=\frac{\psi_{1}\left(\vec{x}_{1}\right) \psi_{2}\left(\vec{x}_{2}\right)}{\sqrt{1+\left|\left(\psi_{1}, \psi_{2}\right)\right|^{2}}}
$$

where $\left(\psi_{i}, \psi_{j}\right) \equiv \int \mathrm{d}^{3} x \psi_{i}^{*}(\vec{x}) \psi_{j}(\vec{x})$.
(b) (6 points) Calculate the expectation value $\left\langle\Psi_{(2)}\right| \hat{n}(\vec{x})\left|\Psi_{(2)}\right\rangle$ of the density operator $\hat{n}(\vec{x}) \equiv \hat{\phi}^{\dagger}(\vec{x}) \hat{\phi}(\vec{x})$ in the state $\left|\Psi_{(2)}\right\rangle$. Which value do you obtain for the integral $\int \mathrm{d}^{3} x\left\langle\Psi_{(2)}\right| \hat{n}(\vec{x})\left|\Psi_{(2)}\right\rangle$?
(c) (3 points) What is the expectation value of the density operator
i. if the one-particle wave functions are orthogonal (i.e. if $\left(\psi_{1}, \psi_{2}\right)=0$)?
ii. for the case of two overlapping normal distributions with distance $2 a$?

$$
\begin{equation*}
\psi_{1}(\vec{x})=\frac{1}{\pi^{\frac{3}{4}}} e^{-\frac{1}{2}\left(\vec{x}-a \vec{e}_{x}\right)^{2}}, \quad \psi_{2}(\vec{x})=\frac{1}{\pi^{\frac{3}{4}}} e^{-\frac{1}{2}\left(\vec{x}+a \vec{e}_{x}\right)^{2}} \tag{5}
\end{equation*}
$$

(d) (4 points) What are the corresponding wave functions in equation (5) and the expectation value of the number density in one dimension? Plot $\left\langle\Psi_{(2)}\right| \hat{n}(x)\left|\Psi_{(2)}\right\rangle$ and $\left|\psi_{1}(x)\right|^{2}+\left|\psi_{2}(x)\right|^{2}$ for $a=1$ and $a=3$.

