Theoretical Physics 5
 Advanced Quantum Mechanics
 Winter Semester 2018/2019 Exercise Sheet 5

lecturer: Prof. Dr. Pedro Schwaller
return until: 2018-11-26

assistant: Eric Madge
30 points
The exercise sheets can be found online at http://www.staff.uni-mainz.de/pschwal/ index_1819.html.
To be handed in until Monday 2018-11-26 (12:30) to the red letterbox 42 (foyer of Staudingerweg 7).

1. Holstein-Primakoff Transformation

(15 points)
In the Heisenberg model a ferromagnet is described as a cubic lattice of particles with spin S which have spin-interactions with the nearest neighbors. The corresponding Hamilton operator is given by

$$
\hat{H}=-J \sum_{\langle k, l\rangle} \overrightarrow{\hat{S}}_{k} \cdot \overrightarrow{\hat{S}}_{l}
$$

where k and l denote lattice positions and the sum runs over nearest neighbor pairs. $\overrightarrow{\hat{S}}_{l}$ is the spin operator of the particle at position l and J is the exchange energy. Using the Holstein-Primakoff transformation,

$$
\begin{equation*}
\hat{S}_{l}^{+}=\sqrt{2 S-\hat{n}_{l}} \hat{a}_{l}, \quad \hat{S}_{l}^{-}=\hat{a}_{l}^{\dagger} \sqrt{2 S-\hat{n}_{l}}, \quad \hat{S}_{l}^{z}=S-\hat{n}_{l} \tag{1}
\end{equation*}
$$

where $\hat{S}_{l}^{ \pm}=\hat{S}_{l}^{x} \pm i \hat{S}_{l}^{y}$ and $\hat{n}_{l}=\hat{a}_{l}^{\dagger} \hat{a}_{l}$, the spin operators can be expressed in terms of bosonic creation and annihilation operators \hat{a}_{l}^{\dagger} and \hat{a}_{l}. In the following we use natural units ($\hbar=c=1$).
(a) (4 points) Show that the operators defined in (1) satisfy the spin algebra $\left[\hat{S}_{k}^{a}, \hat{S}_{l}^{b}\right]=i \delta_{k l} \epsilon^{a b c} \hat{S}_{l}^{c}, a, b, c \in\{x, y, z\}$.
(b) (4 points) Show that \hat{H} to second order in \hat{a}_{l}^{\dagger} and \hat{a}_{l} can be written as follows:

$$
\hat{H}=E_{0}+J S \sum_{\langle k, l\rangle}\left[\left(\hat{a}_{l}^{\dagger}-\hat{a}_{k}^{\dagger}\right)\left(\hat{a}_{l}-\hat{a}_{k}\right)\right], \quad E_{0}=-\sum_{\langle k, l\rangle} J S^{2} .
$$

(c) (5 points) Diagonalize the Hamilton Operator using the Fourier transform of the Bose operators

$$
\hat{a}_{l}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\vec{p}} e^{-i \vec{p} \cdot \vec{x}_{l}} \hat{a}_{\vec{p}}^{\dagger}, \quad \quad \hat{a}_{l}=\frac{1}{\sqrt{N}} \sum_{\vec{p}} e^{i \vec{p} \cdot \vec{x}_{l}} \hat{a}_{\vec{p}}
$$

where N is the number of lattice points. You can use the orthogonality relation

$$
\frac{1}{N} \sum_{l} e^{i(\vec{p}-\vec{q}) \cdot \vec{x}_{l}}=\delta_{\vec{p} \vec{q}}
$$

and rewrite the sum over nearest neighbors as follows:

$$
\sum_{\langle l, k\rangle} f\left(\vec{x}_{l}, \vec{x}_{k}\right)=\frac{1}{2} \sum_{l} \sum_{\vec{\delta}} f\left(\vec{x}_{l}, \vec{x}_{l}+\vec{\delta}\right),
$$

where the vectors $\vec{\delta}$ point to the nearest neighbors. We neglect boundary effects.
(d) (2 points) The operators $\hat{a}_{\vec{p}}^{\dagger}$ and $\hat{a}_{\vec{p}}$ create or annihilate spin waves with momentum \vec{p}, so called magnons. Determine the dispersion relation of the magnons.

2. Electromagnetism

(15 points)
In Lorentz-Heaviside units and with $c=1$, Maxwell's equations are given by

$$
\vec{\nabla} \cdot \vec{E}=\rho, \quad \vec{\nabla} \times \vec{B}=\frac{\partial \vec{E}}{\partial t}+\vec{j}, \quad \vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

By introducing an antisymmetric Tensor $F^{\mu \nu}=-F^{\nu \mu}$ one can make their Lorentz covariance explicit:

$$
F^{i 0}=E^{i}, \quad F^{i j}=-\sum_{k=1}^{3} \varepsilon^{i j k} B^{k}
$$

Use the Minkowski metric $\eta_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1), \mu, \nu \in\{0,1,2,3\}$.
(a) (5 points) Show that

$$
\partial_{\mu} F^{\mu \nu}=J^{\nu} \quad \text { and } \quad \partial_{[\mu} F_{\rho \sigma]}=0
$$

reproduces Maxwell's equations with $J^{\nu}=(\rho, \vec{j}), \partial_{\mu}=\left(\frac{\partial}{\partial t}, \vec{\nabla}\right)$ and ${ }_{[\ldots]}$ denoting the total antisymmetrisation of the indices.
(b) (5 points) Use the transformation properties of the tensor $F^{\mu \nu}$ to show how the electric field \vec{E} transforms under a boost along the x-axis.
(c) (5 points) The electromagnetic four-force f^{μ} acting on a particle with charge e and mass m is given by

$$
f^{\mu}=\frac{\mathrm{d} p^{\mu}}{\mathrm{d} \tau}=e F^{\mu} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \tau},
$$

where τ is the proper time and $p^{\mu}=(E, \vec{p})$. Show that this definition reproduces the Lorentz force

$$
\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=e(\vec{E}+\vec{v} \times \vec{B}) .
$$

What does the zero-component of the equation describe?

