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Exercise Sheet 8
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assistant: Eric Madge 30 points
The exercise sheets can be found online at http://www.staff.uni-mainz.de/pschwal/
index_1819.html.
To be handed in until Monday 2018-12-17 (12:30) to the red letterbox 42 (foyer of
Staudingerweg 7).

1. Natural units (12 points)
In particle physics it is common practice to work in so-called natural units in which
the physical constants speed of light c, reduced Planck constant ~, and Boltzmann
constant kB are set to unity.

c = 1 ~ = 1 kB = 1

Using this convention all quantities can be expressed in units of powers of energy.
According to Einstein, the mass of a particle is for instance related to the corre-
sponding rest energy by the equation E = mc2. For c = 1 we obtain E = m, i.e.
in natural units the mass has the dimension of an energy.1 As fundamental unit for
energy we usually use giga-electronvolts (GeV). The energy dimension of physical
quantities and the corresponding conversion factors can be derived unambiguously
from the values and SI units of c, ~, and kB, or from equations that link the units of
various quantities (e.g. E = mc2).
(a) (2 points) What is 1 GeV in joule? What are c, ~ and kB in SI units? To

which precision do we know the value of the speed of light? Why?
(b) (3 points) If a quantity Q has energy dimension En, we write this as [Q] = n.

For the mass for instance we obtain [m] = 1 since m ∼ E1. A dimensionless
quantity such as the speed of light has [c] = 0 because c = 1 ∼ E0. Considering
the (in-)equalities

E2 = m2c4 + p2c2 ∆E∆t ≥ ~
2 Eγ = 2π~c

λ

Ekin = 1
2mv

2 〈Ekin〉 = 3
2kBT

derive the energy dimensions of the following quantities:

1Of course, we could choose any other quantity as fundamental and for instance express energy in
units of mass.
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i. time
ii. length

iii. temperature
iv. mass

v. velocity
vi. momentum

(c) (4 points) For comparison to experimental data we often need to convert nat-
ural units to SI units. What are the SI units of the quantities in exercise (b) i. to
vi.? What are their natural units (in GeV)? Derive the corresponding conversion
factors (from SI to natural units and vice versa) from the values of c, ~ and kB
in SI units.

(d) (3 points) Consider the position-space Schrödinger equation for an electron in
an electromagnetic field.

i~
∂

∂t
ψ(~x, t) =

[
1

2me

(
−i~∇+ e

c
~A(~x, t)

)2
− eφ(~x, t)

]
ψ(~x, t) .

~A and φ are the vector and scalar potentials of the electromagnetic fields and ψ
is the (normalized) wave function of the electron.
i. How does this equation read in natural units?
ii. Let the elementary charge e be dimensionless. Derive the energy dimensions

of the potentials φ and ~A.
iii. Which energy dimension does the wave function ψ of the electron have?

2. Lorentz invariant integral measure (6 points)
(a) (3 points) Show that the integral measure

d3p

2E with E =
√
~p 2 +m2

is invariant under boosts along the z-axis.
(b) (3 points) The integral measure d4p δ(p2 − m2)Θ(p0) is manifestly invariant

under proper orthochronous Lorentz transformations (Λ0
0 > 0, det Λ = 1).

Show that this can be rewritten as the measure from part (a).

3. The optical theorem (12 points)
The S-matrix describes the transition from an asymptotic (free) initial state |i〉 at
t→ −∞ to an asymptotic (also free) final state |f〉 at t→ +∞, i.e.

|ψ, t = +∞〉 = Ŝ|ψ, t = −∞〉 .

The corresponding matrix elements A(i→ f) are defined by

〈f |T̂ |i〉 = (2π)4δ4(pi − pf )A(i→ f) .

Here, the transfer matrix2 T is the non-trivial part of the S-matrix, Ŝ = 1 + iT̂ .
(a) (1 point) Show that conservation of probability implies the unitarity of the

S-matrix and that this implies the following condition for the transfer matrix
T :

i
(
T̂ † − T̂

)
= T̂ †T̂

2Note that T̂ = (2π)4δ4(pi − pf )T̂ compared to the T̂ operator defined in the lecture.
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(b) (5 points) Derive the generalized optical theorem

A(i→ f)−A∗(f → i) = i
∑
X

∫
dΠX(2π)4δ4(pi − pX)A(i→ X)A∗(f → X)

using the completeness relation

1 =
∑
X

∫
dΠX |X〉〈X| ,

where the sum is over all N -particle states and we integrate over the correspond-
ing Lorentz invariant phase space, i.e.

dΠX ≡
∏
j∈X

d3pj
(2π)3

1
2Ej

.

(c) (3 points) Now consider the special case |i〉 = |f〉 = |A〉 with an one-particle
state |A〉 and relate the propagator A(A→ A) to the total decay width Γtot of
the state |A〉. The latter is defined by the sum of all partial decay widths into
states |X〉, which in turn are given by

Γ(A→ X) = 1
2mA

∫
dΠX (2π)4δ4(pA − pX)|A(A→ X)|2 ,

where mA is the mass of the particle.
(d) (3 points) Now let |A〉 (= |i〉 = |f〉) be a two-particle state. Derive the cor-

responding relation between the forward scattering matrix element A(A → A)
and the total scattering cross section ∑X σ(A→ X), where

σ(A→ X) = 1
4ECM|~pCM|

∫
dΠX (2π)4δ4(pA − pX)|A(A→ X)|2 .

ECM is the center-of-mass energy of the two particles and |~pCM| is the magnitude
of their momenta in the center-of-mass frame. The relation derived here is often
called the “optical theorem”.
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