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Comment on “Deformations, relaxation, and broken symmetries in liquids, solids, and glasses:
A unified topological field theory”
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We discuss a field-theoretical approach to liquids, solids, and glasses, published recently [Phys. Rev. E 105,
034108 (2022)], which aims to describe these materials in a common formalism. We argue that such a formalism
contradicts the known hydrodynamic theory of classical liquids. In particular, the authors miss the important
particle-number conservation law and the density fluctuations as a hydrodynamic slow variable. This results
in an exotic mechanism of hydrodynamic sound instead of the standard hydrodynamic one due to combined
particle-number and momentum conservation, a fact well documented in fluid-mechanics textbooks.
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In a recent paper [1], Baggioli, Landry, and Zaccone (BLZ)
present a formalism aimed to describe crystalline solids,
glassy solids, and liquids in a unified way. BLZ obtained a
hydrodynamic matrix which in a particular case of simple
one-component liquids resulted in three collective modes, one
of which showed an obvious nonhydrodynamic behavior in
the long-wavelength limit.

Any proposed hydrodynamic approach of a classical liquid
must start with naming the conservation laws for a set of
relevant hydrodynamic variables [2–5]. The conserved quan-
tities are the particle number, total momentum, and energy.
The corresponding hydrodynamic variables, which describe
the collective modes, are the number density n(r, t ), the mass-
current density j(r, t ), and the energy density e(r, t ). It is
important to notice that the damping of each collective hy-
drodynamic mode must be proportional to k2 [2–5], with k
being the wave number, i.e., their lifetime tends to infinity in
the long-wavelength (continuum) limit as a consequence of
local conservation laws.

However, in the treatment of BLZ [1] the density does
not appear as a relevant field, nor does the corresponding
continuity equation. Instead of the hydrodynamic longitudinal
sound mode, which arises from particle number and momen-
tum conservation, BLZ invoke a sophisticated scheme with
Goldstone modes responsible for hydrodynamic excitations.
This results in a hydrodynamic matrix for longitudinal dynam-
ics [Eq. (38) of BLZ], the eigenmodes of which contradict the
known hydrodynamic modes in fluids [2–5].

Here, we review the correct form of the hydrody-
namic matrix for longitudinal dynamics, whose eigenmodes

are the hydrodynamic modes in the longitudinal channel.
For describing the longitudinal excitations of classical liq-
uids one may use the three orthogonal dynamic variables
n(k, t ), jL (k, t ), h(k, t ), where the first two are the Fourier
components of the number density and longitudinal mass-
current density fluctuations. h(k, t ) denotes fluctuations of the
heat density, which is the energy density, orthogonalized to
the number density [6]

h(k, t ) = e(k, t ) − 〈e−knk〉
〈n−knk〉n(k, t ), (1)

where the angle brackets denote a statistical average. Using
this set of orthogonal hydrodynamic variables, one obtains the
following hydrodynamic 3 × 3 matrix,

T(hyd)(k) =

⎛
⎜⎝

0 −ikcT 0

−ikcT DLk2 −ikcT
√

γ − 1

0 −ikcT
√

γ − 1 γ DT k2

⎞
⎟⎠,

(2)
where cT is the isothermal speed of sound, and γ = CP/CV is
the ratio of the specific heat. DL is the longitudinal kinematic
viscosity, and DT the thermal diffusivity (diffusivity of the
local temperature). One can see that when γ = 1 (no coupling
between the thermal and viscous processes) the eigenmodes
of T(hyd)(k) can be estimated immediately: In this case the
hydrodynamic matrix has one purely real eigenvalue

zth(k) = DT k2, (3)
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which corresponds to a thermal relaxation mode, and a pair of
complex-conjugated eigenvalues

z±(k) = DL

2
k2 ± icT k (for γ = 1),

which are the sound modes, which are decoupled from the
thermal fluctuations with linear dispersion and isothermal
speed. In the general case of γ � 1 the standard sound modes
with an adiabatic speed of sound cs = cT

√
γ and correct

hydrodynamic damping,

z±(k) = DL + (γ − 1)DT

2
k2 ± icsk, (4)

are obtained from the hydrodynamic matrix (2). The origin of
the long-wavelength sound modes is now clearly seen even
in the particular case of γ = 1: They come from the cou-
pling of density and mass-current fluctuations. At variance,
in Ref. [1], BLZ do not account for the density fluctuations
as the hydrodynamic variable [the set of dynamic variables in
their Eq. (14)], i.e., they ignore the continuity equation

dn(k, t )

dt
+ i

k

m
jL(k, t ) = 0, (5)

where m is molar mass, which is fundamental for all liq-
uids [2–5]. Recently, some of us [7] have demonstrated that
one obtains results, which contradict the known dynamic
properties of liquids, if the continuity equation is not taken
into account.

As a consequence of the absence of the continuity equa-
tion (5) in their treatment, BLZ claim that their longitudinal
sound would come “from the mixing of energy fluctuations

and longitudinal momentum fluctuations” (quoting BLZ [1]),
at variance with textbook knowledge [2–5].

Further, BLZ do not obtain the thermal relaxation mode (3)
among the eigenmodes of their 3 × 3 “hydrodynamic matrix”
[their Eq. (38) and Fig. 9]), which means that they do not
recover the standard Rayleigh-Brillouin three-peak shape for
the dynamic structure factors S(k, ω) (see Fig. 4.2 in Forster’s
book [3]) with the famous Landau-Placzek ratio [2–5]. Their
single relaxation mode behaves (in their Fig. 9) as typical
nonhydrodynamic relaxation, which has a finite lifetime at
large length scales, and cannot contribute to S(k → 0, ω) in
the hydrodynamic k → 0 limit.

We further mention that the viscoelastic equation [8,9]
[similarly as Eq. (96) in Ref. [1]] explicitly contains the
Maxwell relaxation time τ = η/G,

d

dt
γ (t ) = 1

G

d

dt
σ (t ) + 1

η
σ (t ) = 1

G

(
d

dt
+ 1

τ

)
σ (t ), (6)

where γ (t ) is the strain rate, σ (t ) the stress, G the shear
modulus, and η the shear viscosity. BLZ incorrectly call τ

the “single-particle relaxation time” (in the caption to their
Fig. 5), whereas it describes the relaxation of the collective
macroscopic shear stress σ (t ) [10] and by the Kubo-Green
relation [4] and definition of correlation times is exactly equal
to the correlation time of the shear stress autocorrelation

τ = η

G
≡ 1

〈σ (0)σ (0)〉
∫ ∞

0
〈σ (t )σ (0)〉dt = τ corr

σ . (7)
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