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We investigate a class of simple mass-spring models for the vibrational dynamics of

topologically disordered solids. The dynamical matrix of these systems corresponds

to the Euclidean-Random-Matrix (ERM) scheme. We show that the self-consistent

ERM approximation introduced by Ganter and Schirmacher [1] preserves the first two

nontrivial moments of the level density exactly. We further establish a link between these

approximations and the fluctuating-elasticity approaches. Using this correspondence

we derive and solve a new, simplified mean-field theory for calculating the vibrational

spectrum of disordered mass-spring models with topological disorder. We calculate

and discuss the level density and the spectral moments for a model in which the force

constants obey a Gaussian site-separation dependence. We find fair agreement between

the results of the new theory and a numerical simulation of the model. For systems with

finite size we find that the moments strongly depend on the number of sites, which poses

a caveat for extrapolating finite-system simulations to the infinite-size limit.

Keywords: glasses, disordered systems, vibrational dynamics, density of states, theory, SCBA, heterogeneous

elasticity

PACS numbers: 63.50.-×, 61.43.Fs, 65.60.+a

1. INTRODUCTION

The vibrational properties of disordered solids at high frequencies, in the THz range, have been
subject to great attention both from the experimental [2] and from the theoretical side [3] mainly
because of the anomalies observed in the specific heat and in the thermal conductivity of glasses
[4, 5]. The origin of an excess of the vibrational density of states (DOS) with respect to the Debye
prediction in the THz region (an excess that is often referred to as “boson peak”) is thought to be
the common origin of both anomalies. Also of interest, and at the origin of a lively debate [6–10],
is the anomalous sound attenuation and the presence of a non-linear sound dispersion observed in
the same frequency regime.

There is, nowadays, agreement on the fact that both the boson peak and the frequency
dependence of the sound attenuation are the dynamical manifestation of the underlying topological
(structural) disorder and that these features are not related to anharmonic interactions, to
hopping processes or to other exotic phenomena like van-Hove singularities [11, 12]. The rich
phenomenology observed in the dynamics of glasses in the THz frequency region can all be
considered of harmonic origin [13, 14]. What is still missing is a deep understanding of the
mechanisms that correlate the specificity of the topological disorder with the details of the observed
dynamical anomalies.
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In this respect, it becomes evident how important is the
development of models of topological disorder with tunable
properties.

The model approaches present in the literature for the
influence of the disorder on the harmonic vibrational spectrum
of solids can be grouped into models with waves in a spatially
inhomogeneous media and mass-spring models. The wave
approaches can again be grouped into a discription in terms
of defect models [15–21] and fluctuating-elasticity approaches
[9, 22–26].

In the defect models additional irregularities like atoms
with heavy masses [15–17] or quasi-local harmonic oscillators
[18–21], which couple to the Debye phonons, are introduced.
The defect and coupling parameters are subject to a random
distribution. In the fluctuating elasticity approach [9, 22–25, 27,
28] it is assumed that the elastic constants, (in particular the shear
modulus) fluctuate around a mean value at different locations in
space in a spatially correlated or uncorrelated fashion. Within
this latter framework the disorder can be shown to lead to
the anomalous increase of the DOS (and hence specific heat)
with respect to the Debye prediction and to a contribution to
the sound attenuation. It has been pointed out [27, 28] that
in principle the defect description can be subsumed under the
fluctuating-elasticity approach via a coarse-graining procedure.

In the disordered mass-spring models (which we shall address
in the present contribution) one considers a set of mass
points (mass M), which are fixed in space according to a
given distribution and are connected by harmonic springs with
spring constants Kij. The equation of motion for the (scalar)
displacements ui from the rest positions is

M
d2

dt2
ui(t) = −

∑

j 6=i

Kij

[

ui(t)− uj(t)
]

(1)

The disorder may be introduced by assuming a distribution of
the Kij on an otherwise ordered lattice (force-constant disorder)
or placing the sites ri randomly in space and then making the
force constant depend on the site separations rij = |ri − rj|, i.e.,
Kij = K(rij) (topological disorder).

There is an extended literature on such disordered mass-
spring models [1, 29–42], which is due to the fact that they
are considered to be relevant to the high-frequency vibrational
dynamics of amorphous solids and liquids. They exhibit a
wealth of anomalous phenomena including a boson peak [29,
32, 34–36, 38, 39, 41] and localization [33, 35, 42]. There is
another point, which makes the investigation of models, which
obey (Equation 1), interesting. If one replaces the double time
derivative by a single one (and takes M = 1), one obtains the
equation of motion of a random walker in a disordered system.
The ui(t) then take the meaning of the probability to find the
walker at site i. It has been pointed out [1, 32, 43] that all
anomalous features observed in the vibrational system (Equation
1) are also observed in the random-walk system: For example
Rayleigh scattering in the vibrational system corresponds to an
algebraic long-time tail in the velocity autocorrelation function
in the random-walk system [1]. The boson peak corresponds to

the onset of a strong frequency dependence of the conductivity in
the random-walk system [32, 43].

The so-called Euclidean-Random-Matrix (ERM) approach
introduced by Grigera et al. [39] is a systematic analytic approach
to calculate the averaged vibrational spectrum and dynamical
structure factor of systems govened by Equation (1). This is
achieved by a high-frequency and high-density expansion, which
is organized with the help of a diagram technique [1, 39, 40]

The ERM formalism allows for formulating self-consistent
effective-medium approximations for the averaged Green’s
function corresponding to Equation (1). Such effective-
medium approximations (“self-consistent ERM (SCERM)
approximations,” which include the Rayleigh-scattering
property1 have been introduced by Ganter and Schirmacher [1].

In view of the fact that the ERM formalism enables to directly
link the structure of a disordered solid to its vibrational spectrum
it is desirable to establish a connection between this theory
and the phenomenological heterogeneous elasticity theory. This,
among others, will be done in the present paper. We start our
investigation of the ERMmass-and spring model by showing that
the self-consistent ERM approximations preserve the first two
nontrivial moments (1st and 2nd) of the averaged level density.
We then establish a link between the SCERM approximations
and the self-consistent Born approximation (SCBA) of the
heterogeneous elasticity theory. By means of this correspondence
we devise a simplified SCERM theory (ERM-SCBA), which
allows for solving the equations by a few iterations instead solving
a set of integral equations.

In the second part of the paper we calculate numerically
and in ERM-SCBA the level density and the first two nontrivial
moments for a model with a Gaussian r dependence of the force
constants. The moment calculations are done both for an infinite
and a finite system. For the latter we find a strong N dependence
of the moments, which is relevant for simulations in which only
finite systems can be dealt with.

2. FORMALISM

2.1. Mass-Spring Model
We consider a mass-spring model withN mass points distributed
at random in a volume V = L3 = N/ρ. We shall also consider
the limit N → ∞ with fixed density ρ.

Equation (1) can be re-written as

d2

dt2
ui = −

∑

j

Dijuj (2)

with the dynamical matrix D, having off-diagonal
elements Dij = −K(rij)/M and diagonal elements
Dii = −

∑

i6=j Dij =
∑

i6=j K(rij)/M. D has N eigenvalues

λp = ω2
p, where ωp are the eigenfrequencies.

1In their original papers on the ERM formalism the authors claimed that the model

would not exhibit Rayleigh scattering [39, 40]. Ganter and Schirmacher [1] and

later Grigera et al. [49] showed that this statement was in error.
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2.2. Density of States and Spectral
Moments
The density of states g(ω) and the density of eigenvalues (“levels”)
ρ(λ) are given by

ρ(λ) = 1

2
ωg(ω) = 1

N

〈

∑

p

δ(λ − λp)

〉

=
〈

1

Nπ
Im{tr[s11+D]−1}

〉

(3)

where s = −ω2 − iǫ, 11 is the unit matrix and 〈. . . 〉 denotes a
configurational average. Again λ = ω2 denotes the eigenvalues
of the dynamical matrix. Due to the sum rule

∑

i Dij =
0 (translation invariance) the dynamical matrix has always a
“trivial” eigenvalue λ = 0 and, more important, there exists
always an interval 0 < λ < λ∗, in which a Debye law is valid,
i.e., g(ω) ∝ ω2 ↔ ρ(λ) ∝ λ1/2.

In the present paper we thoughout assume a random
distribution of points with density P(r1 . . . ri . . . rN) = V−N . The
n-th spectral moment of the level density is defined as

M(n) =
∫

dλ λnρ(λ). (4)

With the present definition of ρ(λ), the zeroth moment turns
out to be equal to one, therefore the moments are automatically
“normalized”. Let’s also define the “central” moments:

M(n)
c =

∫

dλ (λ − λ̄)nρ(λ) (5)

with λ̄
.= M(1).

As stated above, the dynamical matrix has always the “trivial”
eigenvalue, λ = 0. This has a non-negligible effect on the

higher moments (specifically, it effects M
(n)
c ). Therefore, we

define a “non trivial” density of states, ρ̂(λ), where the vanishing
eigenvalue is excluded from the sum:

ρ̂(λ) = 1

N − 1

∑

p|λp 6=0

δ(λ − λp) (6)

Let’s call M̂(n) and M̂
(n)
c the corresponding moments.

As far as the “hat” moments, we note that all the moments
with n > 0 are unaffected (add or subtract λnp , with λp = 0), but
the normalization ((N − 1) instead of N) is different. The “hat”
moments are thus obtained by multiplying the “non-hat” ones
with N/(N − 1).

The moments M(n) can be directly related to the dynamical
matrix via:

M(n) =
∫

dλ λnρ(λ) = 1

N

〈

∑

p

λnp

〉

= 1

N

〈

tr{Dn}
〉

(7)

We represent the moments in terms of the dimensionless
function f (r) defined as K(rij) = K0f (rij/σ ) = K0fij, where σ

is the characteristic decay length and their average

〈

f n
〉

= 1

N(N − 1)

〈

∑

i6=j

f nij

〉

= 1

V

∫

V
d3rf (r/σ )n (8)

The results for the moments (see Appendix) are

M(1) = K0

M
(N − 1)〈f 〉 (9)

M(2) =
(K0

M

)2[

2N〈f 2〉 + N2〈f 〉2
]

M(2)
c =

(K0

M

)2
N

[

2〈f 2〉 − 〈f 〉2
]

M̂(2) =
(K0

M

)2[

2N〈f 2〉 + N2〈f 〉2
]

(10)

M̂(2)
c =

(K0

M

)2
2N

[

〈f 2〉 − 〈f 〉2
]

In the N → ∞ limit it is useful to define the dimensionless
constants and Ŵ = 1

ρσ 3 , f0 =
∫

d3rf (r), and f
(2)
0 =

∫

d3rf (r)2,

where the integral is over the entire space.
In this limit the M̂(2) moments become equal to the ones

without hat and we have

M(1)
∞ = K0f0

MŴ

M(2)
∞ = 2

K0f
(2)
0

MŴ
+ [M(1)

∞ ]2 (11)

M(2)
c,∞ = 2

K0f
(2)
0

MŴ

2.3. Euclidean Random Matrix (ERM)
Formalism
To make contact to the ERM formalism [1, 39, 40] we consider
the Fourier transformed force constants

t(q)
.= ρ

M
K̃(q) = K0f0

MŴ
f̃ (σq) = t0 f̃ (σq) (12)

with

f̃ (k) = f̃ (k) = 1

f0

∫

d3reikrf (r) (13)

so that f̃ (k = 0) = 1 and t0 = t(k=0) = M
(1)
∞ .

The quantity of interest is the q dependent averaged Green’s
function

G(q, s) =
〈

1

N

∑

ℓm

eiq(rℓ−rm)[s11+D]−1
ℓm

〉

= 1

s+ t0 − t(q)− 6(q, s)
(14)
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where 6(q, s) is the self-energy function and, as before, s =
−λ−ǫ = −ω2−ǫ. The level density is obtained from the Green’s
function via

ρ(λ) = 1

π
Im

{

G∞(s)
}

(15)

with G∞(s) = lim
|q|→∞

G(q, s).

The self energy can (and has been [1, 39, 40]) calculated with
increasing powers of the inverse density ρ. The lowest-order
result is 6(0)(q, s) = 0, so that in the high-density limit

G(0)(q, s) = 1

s+ t0 − t(k)
(16)

One can make contact between this high-density limit and the
traditional liquid-phonon theory of Hubbard and Beeby [44] by
identifying the “liquid dispersion” with � =

√
t0 − t(k) and the

Einstein frequency with �E = √
t0.

The lowest-order nontrivial contribution to the self energy is
[1, 39, 40]

6(1)(q, s) =
∑

p

[

t(p−q)− t(p)
]2
G(0)(p, s) (17)

Here
∑

p denotes
1

ρ(2π)3

∫

d3p.

It has been suggested [39, 40] that one might obtain a
suitable self-consistent (i.e., non-perturbative) approximation by
replacing G0(p, s) in Equation (17) by the full Green’s function
G(p, s). However, as shown by Ganter and Schirmacher [1], this
self-consistent scheme violates the requirement that the sound
attenuation coefficient Ŵ(ω) ∝ lim

|q|→0
ωIm{6(q, s)}/q2 should

vary ∝ ω4 (Rayleigh scattering). A self-consistent scheme, which
preserves this property has been proposed [1] by introducing
auxiliary quantities g(q, s) and σ (q, s).

Within the self-consistent ERM (SCERM) approximation the
self energy is given by

6(q, s) =
∑

p

[

t(q−p)− t(p)
]2
g(p, s) (18)

This relation between 6(q, s) and the auxiliary quantities g(q, s)
and σ (q, s) has been called “cactus-1-approximation” in Ganter
and Schirmacher [1]. A more complicated relation (“cactus-
2”) suggested also by Ganter and Schirmacher [1] shall not be
considered here.

The auxiliary quantities σ (q, s) and g(q, s) obey the self-
consistent set of equations

g(q, s) =
[

s+ t0 − t(q)− σ (q, s)
]−1

(19)

σ (q, s) =
∑

p

[

t(q−p)− t(p)
][

t(q−p)− t(q)
]

g(p, s)

2.3.1. The Spectral Moments in the ERM Formalism
In order to relate the SCERM scheme outlined in the previous
paragraph to the spectral moments, we perform a high frequency
expansion of the Green’s function. We take advantage of the
Hilbert-Stieltjes transformation relating G(q, s) to its imaginary
part:

G(q, s) = 1

π

∫

G′′(q, λ)

s− λ
dλ (20)

Performing the |q|→∞ limit as prescribed in Equation (15), we
obtain

G∞(s) =
∫

ρ(λ)

s− λ
dλ

= 1

s

∞
∑

n=0

(−)n
∫

(λ

s

)n
ρ(λ)dλ (21)

= 1

s
M(0) − 1

s2
M(1) + 1

s3
M(2) − ...

In the |q| → ∞ limit the Green’s function of Equation (14)
becomes (taking into account lim

|q|→∞
t(k) → 0)

G∞(s) =
[

s+ t0 − 6∞(s)
]−1

(22)

= 1

s
− 1

s2

[

t0 − 6∞(s)
]

+ 1

s3

[

t0 − 6∞(s)
]2

− ...

In order to expand the self energy it is advisable to reformulate
Equation (19), using the identy,

∑

p

h1(q−p)h2(p) = −
∑

p

h2(q−p)h1(p) (23)

as

6(q, s) =
∑

p

[

t(p)− t(q−p)
]

t(p)
[

g(p, s)+ g(q− p, s)
]

(24)

The |q| → ∞ limit is then

6∞(s) =
∑

p

t2(p)
[

g(p, s)+ g∞(s)
]

(25)

We are interested in the first two nontrivial moments, therefore
we need the expansion in 1/s up to the cubic, 1/s3, term. By
inspecting Equation (22), we note that it is sufficient to expand
6∞(s) up to 1/s to have G∞(s) correct up to 1/s3. In Equation
(25) the leading contribution is given by the high-frequency limit
g(p, s) → 1/s. The leading result for 6∞(s) is then

6∞(s) = 2

s

∑

p

t2(p)+ O(
1

s2
) (26)

Inserting this equation into Equation (22):

G∞(s) = 1

s
− 1

s2
to +

1

s3

[

t2o + 2
∑

p

t2(p)
]

− ... (27)
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By comparing this equation with Equation (21) we have:

M(0) = 1

M(1) = t0 (28)

M(2) = t20 + 2
∑

p

t2(p) = t20

[

1+ 2
∑

p

f̃ 2(σp)
]

Using the Parseval theorem one can easily show

∑

p

t2(p) = K0f
(2)
0

MŴ
= 1

2
M(2)

c,∞ (29)

so that the results Equations (11) and (28) are the same.
This means that the SCERM approximation not only

preserves the Rayleigh scattering property, as emphasized
in Ganter and Schirmacher [1] but also preserves the first
three spectral moments. Because we used only the property
lim

|s|→∞
g(q, s) = 1/s, any theory for calculating the “internal”

Green’s function will have this property. The nontrivial task
is to come up with such a theory. In the next but one
paragraph we show that one can establish a link between the self-
consistent ERM approximations [1] and the self-consistent Born
approximation of the heterogeneous elasticity theory [9, 22–25].
By this correspondence we shall find a simplified theory for
calculating the DOS.

2.3.2. The DOS in the SCERM Formalism
For calculating the level density we need the large-wavenumber
limit of the self energy6∞(s), Equation (25). In these expressions
appears the large-wavenumber limit of the auxiliary quantities
σ∞ = lim

q→∞
σ (q, s) and g∞ = lim

q→∞
g(q, s). In order to

calculate these quantities we take the large wavenumber limit in
the self-consistent equations (Equation 19) applying again the
convolution identity (Equation 23) to obtain

σ∞ =
∑

p

t(p)2 g∞ (30)

g∞ = 1

s+ t0 − σ∞
= 1

s+ t0 −
∑

p t(p)
2g∞

(31)

Equations (30) and (31) lead to a quadratic equation for g∞ with
the solution (“Hubbard Green’s function” [15])

g∞(s)
.= gHE(s) =

2

s+ t0 +
√

[s+ t0]2 − 4
∑

p t(p)
2

(32)

Its imaginary part is a half-ellipse (HE), centered around t0 with

half width 2
√

∑

p t
2(p) =

√

2M
(2)
c,∞.

Combining now Equations (25) and (30) we have

6∞(s) = 6(1)
∞ (s)+ σ∞(s) (33)

with

6(1)
∞ (s) =

∑

p

t(p)2g(p, s) (34)

Combining this with the expression (Equation 22) for G∞(s) we
get

G∞(s) = g∞
(

s− 6(1)
∞ (s)

)

= gHE
(

s− 6(1)
∞ (s)

)

(35)

For the level density we then obtain

ρ(λ) = 1

π
Im

{

gHE
(

s− 6(1)
∞ (s)

)

}

(36)

with gHE(s) given by Equation (32) and 6
(1)
∞ (s) according to

Equation (34).

2.3.3. Relation to Heterogeneous-Elasticity Theory

and New Self-Consistent ERM Theory
If we consider the self-consistency Equation (19) we realize that
the main contributions to the integrals over wavevectors are
restricted to |q| < 1/σ . This means that one does not make a big
error, if one makes an expansion with respect to the parameter
|q|σ , i.e., a hydrodynamic expansion. For t(q) we can write

t(q) = t0 − q2c20 (37)

where

c20 = −1

2

∂2

∂q2
t(q)

∣

∣

∣

∣

q=0

(38)

is the unrenormalized sound velocity. We now define a
hydrodynamic self energy

σ1(s) = lim
q→0

1

q2
σ (q, s) (39)

so that the auxiliary Green’s function becomes

g(q, s) = 1

s+ q2(c20 − σ1(s))
(40)

In order to perform the limit of Equation (39) we use the Taylor
Formula

t(q− p)− t(p) = t′(p)
qp

p
(41)

+ 1

2

[

t′′(p)p− t′(p)
] (qp)2

p3
+ 1

2
t′(p)

k2

p

where t′(q) and t′′(q) are the derivatives with respect to q = |q|.
Realizing that only even powers of qp contribute to the p integral
in Equation (19) we obtain the following self-consistent equation
for σ (q, s)

σ (q, s) = 1

q
t′(q)

∑

p

1

p
t′(p)

[

(qp)2 + 1

4
q2p2

]

g(q, s) (42)
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Taking into account the angle average
〈

(qp)2
〉

= 1
3q

2p2 and

replacing t′(q)/q by its low-q limit−2c20 we get

σ1(s) =
7

6
c20

∑

p

p2
[

−t′(p)/p
]

g(p, s) (43)

Introducing the dimensionless wavenumber p̃ = σp and the
dimensionles self energy σ̃1(s) = σ1(s)/c

2
0 we obtain

σ̃1(s) = γ
1

I0

∫ ∞

0
dp̃p̃4

[

− f̃ ′(p̃)/p̃
] 1

sσ 2/c20 + p̃2
[

1− σ̃1(s)
] (44)

with the disorder parameter

γ = 7

6π2
I0
t0σ

2

c20
Ŵ (45)

and the normalization constant

I0 =
∫ ∞

0
dp̃p̃2

[

− f̃ ′(p̃)/p̃
]

(46)

We mention that the prefactors of Ŵ in Equation (45) are model
dependent constants, which do not depend on any physical
parameter. For the Gaussian force constants t0σ

2/c20 = 2 and
I0 =

√
π/2.

Equation (45) is mathematical identical with the version of
the SCBA for correlated fluctuating elastic constants [24, 25].
One has to make the replacements C(q) ↔ [−f ′(q)/q], where
C(q) is the Fourier-transformed correlation function of the
elastic moduli, divided by their variance. The disorder parameter
γ ∝ Ŵ = 1/ρσ 3 is proportional to the relative variation
of the fluctuating elastic modulus of a mass-spring model,
evaluated by a coarse-graining procedure, as shown by Ganter
and Schirmacher [1]. Because both for a Gaussian as for an
exponential f̃ (p̃) the integral in Equation (44) can be done
analytically, the solution of this equation is a matter of a few
iterations and ismuch easier and quicker than solving the integral
Equation (19).

Taking these considerations into account we now propose the
following simplified SCERM scheme, which we call ERM-SCBA:

In this approximation we use in formula (Equation 34) for6
(1)
∞ (s)

the hydrodynamic g(q, s) of Equation (40) i.e.,

6(1)(s) =
∑

p

t(p)2
1

s+ q2
(

c20 − σ1(s)
) (47)

with the SCBA self energy σ1(s) given by the SCBA Equation (43)

σ1(s) =
7

6
c20

∑

p

p2
[

−t′(p)/p
] 1

s+ q2
(

c20 − σ1(s)
) (48)

This new self-consistent scheme for calculating approximately
the spectrum of a disordered mass-spring model is the most
important result of the present paper.

We emphasize that this approximation still meets the
requirements of

(i) Preserving the lowest two nontrivial moments,
(ii) Giving a Debye DOS for λ < λ∗,
(iii) Leading to Rayleigh scattering in the same frequency range.

We shall investigate the accuracy of this approximation in the
next chapter.

3. THE GAUSSIAN FORCE CONSTANTS

In this section we report the results for the case of the Gaussian

shape for the force constants K(r) = K0e
− 1

2 (r/σ )
2
, so that we have

f (r) = e−r2/2, f0 = (2π)3/2 and f
(2)
0 = π3/2. For the “vertex

function” in Equation (44) we have

− 1

q̃
f̃ ′(q̃) = f̃ (q̃). (49)

3.1. Numerical Simulation
In order to compare the analytical expression for the spectral
moments summarized in the next paragraph, and, more
important, to test the level of accuracy of the different theoretical
approximation for the DOS spectral shape, we run a numerical
simulation of the dynamics in the specific case of Gaussian
shape for K(rij). For different values of the couple of parameters
(N, Ŵ) we randomly chose N points (r̄i) distributed in a box
of size L = 1, set up the dynamical matrix with K0=1 and
M = 1, diagonalized this matrix using the Jacobi diagonalization
algorithm [45], and set up the DOS as histogram of the
obtained eigenvalues by repeating ≈1,000 times the random
points choosing. The so obtained spectra are compared (see
later) with the results of the theoretical approximations,
and their spectral moments are derived by numerical
integrations.

FIGURE 1 | Comparison between the numerically calculated level density

(N = 800) for Ŵ = 1 (red connected symbols) with the SCERM result of Ganter

and Schirmacher [1] (blue dash-double dots), our ERM-SCBA result (red

dashes) and the half-elliptic DOS (green dash-dots).
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3.2. Results for the Level Density
Let us collect the equations we need for calculating the ERM-
SCBA density of levels for the Gaussian model:

ρ(λ̃) = 1

π
Im

{

g̃HE
(

s̃− 6̃(1)(s̃)
)

}

(50a)

g̃HE(s̃) = t0gHE(s̃) (50b)

= 2

s̃+ 1+
√

[s̃+ 1]2 − 4
∑

p t(p)
2/t20

6̃(1)(s̃) = 6(1)/t0 (50c)

= 1

2π3/2

Ŵ

1− σ̃1(s̃)
I2

(

√

−2s̃/[1− σ̃1]

)

σ̃1(s̃) = γ

1− σ̃1(s̃)
I4

(

√

−s̃([1− σ̃1]

)

(50d)

with

In(z) =
2√
π

∫ ∞

0
dx

xne−x2

x2 − z2
· (50e)

We have

I4(z) = 1+ z2I2(z) (50f)

and

I2(z) = 1+
√

π izw(z) (50g)

λ̃ = λ/t0 and s̃ = s/t0 are the dimensionless frequency variables

and w(z) = e−z2erfc(−iz) is the Faddeeva function [46]. It is clear
that Equation (50d) is the one, which has to be iterated.

In Figure 1 we compare the level density of the numerical
diagonalization for Ŵ = 1 with the result of the SCERM
calculation of Ganter and Schirmacher [1] and our ERM-
SCBA calculation for Ŵ = 1. We include also the level
density corresponding to the half-elliptic DOS. It is seen
that both self-consistent approximations give a fair description
of the numerical DOS. The ERM-SCBA gives even a more
symmetrical result for the “Einstein peak” around t0, compared
with the SCERM result. It smoothly interpolates from the
“hydrodynamic” DOS to the half-elliptic Einstein peak.

In Figure 2 we compare the level density of the numerical
simulation with the ERM-SCBA for different values of Ŵ. The
decreasing accuracy of the theoretical results with degreasing Ŵ

might be due to the appearance of finite-size effects (see next
paragraph).

We conclude that the ERM-SCBA introduced by us is a handy
tool to calculate almost analytically the DOS of a spring-mass
model. While the ERM-SCBA is not as accurate as the SCERM
theory, it is much easier tractable, because here we have to solve
only the SCBA Equation (50c), which requires a few numerical
iterations, whereas for the SCERM theory one has to solve the set
of three-dimensional integral Equation (19).

3.3. Results for the Moments
3.3.1. The Average 〈f〉 and 〈f2〉 in the Gaussian Case
We are now calculating the averages 〈f 〉 and 〈f 2〉 needed for the
moments. We do this calculation for a finite volume V as present
in our numerical calculation.

〈f 〉 = 1

V

∫

d3r exp(−r̄2/2σ 2) = (51)

[ 1

L

∫ L/2

−L/2
dx exp(−x2/2σ 2)

]3
=

[√
2π

σ

L
erf(

√
2L

4σ
)
]3

Similarly, 〈f 2〉 is obtained by the previous equation with the
substitution σ → σ/

√
2:

〈f 2〉 =
[√

π
σ

L
erf(

L

2σ
)
]3

(52)

Summing up:

〈f 〉 = (2π)3/2
(σ

L

)3
erf3(

√
2L

4σ
) (53)

〈f 2〉 = π3/2
(σ

L

)3
erf3(

L

2σ
) (54)

In terms of (Ŵ, N) the averages become:

〈f 〉 = 1

N
(2π)3/2

( 1

Ŵ

)

erf3
(

√
2

4
(NŴ)1/3

)

(55)

〈f 2〉 = 1

N
π3/2

( 1

Ŵ

)

erf3
(1

2
(NŴ)1/3

)

(56)

3.3.2. Check at Finite Size
We now compare the exact results for the moments in a finite
volume, Equations (9), (11), together with Equations (55), (56)
with the results of the numerical simulation as described before.

FIGURE 2 | Comparison between the numerically calculated level density

(N = 200, blue connected symbols) with the results of ERM-SCBA (red lines)

for Ŵ = 0.3, 0.65, 1.5, and 3.5 (from top to bottom).
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FIGURE 3 | Comparison between the analytical (full lines, from Equations 9

and 55) and numerical (black dots) results for the first moment M(1) of the

spectral density of states ρ(λ). λ = ω2 are the eigenvalues of the dynamical

matrix and ω are the characteristic frequencies. The data at the indicated

selected N values are reported as a function of the parameter Ŵ. The N values

(N = 50, 100, 150, 200, 300, 500, 1,000, and 10,000 for the analytical case

and 50 and 150 for the numerical one) are indicated on the black curves. The

red line is the asymptotic, N→∞, limit reported in Equation (58).

In the next figures the analytical results are compared, in log
log scale, with the simulation for N = 50 and 150. The data
are reported as function of Ŵ in the range 10−3–103. Figure 3
reports the comparison of the analytic calculation (black lines)
of the first moment M(1) with the results of the numerical
simulation (dots). Similarly, Figure 4 reports the comparison
of the analytic calculation of the second moment M(2) with
the simulation. Finally Figure 5 reports the comparison of the

analytic calculation of the second central moments M
(2)
c (black)

and M̃
(2)
c (blue) with the results of the numerical simulation. The

red lines in the figure represent the large N (full) and small Ŵ

(dashed) limits. All the comparisons are favorable.

3.3.3. Infinite Size Limit
In the limit of infinite size, L→∞,N→∞, ρ = N/L3 = constant,
from Equations (55) and (56)

we get (with erf(x) → 1 for large x):

N → ∞







N〈f 〉 = (2π)3/2
(

1
Ŵ

)

N〈f 2〉 = π3/2
(

1
Ŵ

) (57)

Thus, the moments become (in the infinite size limit M̃(n) =
M(n)):

N → ∞



















M(1)=
(

Ko
M

)

(2π)3/2
(

1
Ŵ

)

M(2)=
(

Ko
M

)2[

2π3/2
(

1
Ŵ

)

+ (2π)3
(

1
Ŵ2

)]

M
(2)
c =

(

Ko
M

)2
2π3/2

(

1
Ŵ

)

(58)

In the infinite size limit the moments only depend on Ŵ, which
justify the choice of this parameter instead of ρ or/and σ .

FIGURE 4 | Comparison between the analytical (full lines, from Equations 11,

55, and 56) and numerical (black dots) results for the second moment M(2) of

the spectral density of states ρ(λ). The data at the indicated selected N values

are reported as a function of the parameter Ŵ. The N values (N = 50, 150, and

500 for the analytical case and 50 and 150 for the numerical one) are indicated

on the black curves. The red line is the asymptotic, N→∞, limit reported in

Equation (58).

FIGURE 5 | Comparison between the analytical (full lines, from Equations 11,

55, and 56) and numerical (dots) results for the second central moment M(2)

(black) and for the “non trivial” second central moment M̃(2) (blue) of the

spectral density of states ρ(λ). The data at the indicated selected N values are

reported as a function of the parameter Ŵ. The N values (N = 50, 150, and 500

for the analytical case and 50 and 150 for the numerical one) are indicated on

the black and blue curves. The red full line is the asymptotic, N→∞, limit

reported in Equation (58), it turns out to be the same for M(2) and M̃(2). The

dashed red lines are the low Ŵ limit, reported in Equation (60).

These infinite size equations are reported as full red lines in
Figures 3–5.

3.3.4. Large and Small Ŵ Limits
Large Ŵ is similar to large L, thus the asymptotic expansions in
Equation (58) are valid at large Ŵ with the further simplification
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that the term in Ŵ−2 can be neglected in the expression forM(2):

Ŵ → ∞



















M(1) =
(

Ko
M

)

(2π)3/2
(

1
Ŵ

)

M(2) =
(

Ko
M

)2
2π3/2

(

1
Ŵ

)

M
(2)
c =

(

Ko
M

)2
2π3/2

(

1
Ŵ

)

(59)

While straightforward algebra gives the small Ŵ limit, that
turns out to be:

Ŵ → 0



































M(1) =
(

Ko
M

)

N

M(2) =
(

Ko
M

)2
N2

M
(2)
c =

(

Ko
M

)2
N

M̃
(2)
c =

(

Ko
M

)2
1
5!N

7/3Ŵ4/3

(60)

These limits are easily verified in the three figures previously

reported. The equation for M̃
(2)
c is reported in Figure 5 as dashed

red line.

4. DISCUSSION AND CONCLUSION

In the paper we have shown that the self-consistent euclidean-
matrix (SCERM) approximation of Ganter and Schirmacher [1]
preserves the two nontrivial moments of the eigenvalue spectrum
of mass-and spring models. This confirms the conclusion that
the ERM formalism is a very powerful one and is a good starting
point for further work.

We have calculated the exact expressions for the 1st and 2nd
spectral moments for finite and infinite samples. We show that
in the limit of large interaction parameter σ there is a strong size
(N) dependence of the spectral moments, thus posing a caveat on
the extrapolation of finite-size molecular dynamics simulations
to the thermodynamic, large N, limit.

We have established a link between the self-consistent
ERM (SCERM) approximation of Ganter and Schirmacher
[1] and the self-consistent Born (SCBA) scheme of the
heterogeneous-elasticity theory of vibrational anomalies [9, 23].

By this we constructed a simplified version of the SCERM

approximation, the ERM-SCBA, which compares well to our
numerical diagonalization of the Gaussian-force-constant model.
As the SCBA version of herogeneous-elasticity theory has served
[9, 23, 47] to explain the vibrational anomalies related to the
boson peak this is—in a nutshell—also the case for the new
ERM-SCBA.

A more realistic theory, applicable to amorphous solids and
liquids in the high-frequency regime should not be based on
a scalar mass-spring model but on the full vectorial equations
of motions of a disordered solid, interacting via pair potentials.
The force constants, which appear in this theory are the
second derivatives of the pair potentials. Furthermore the
configurational averages should not be based on the random
statistics of points but on the statistics of atoms in an amorphous
solid, consistent with the pair potentials. Such a theory has been
formulated within the ERM scheme by Ciliberti et al. [48], but
unfortunately contained a mistake concerning the summation
of diagrams, such that the Rayleigh-scattering property was not
obtained [1, 49], and the other results are, therefore, questionable.
A vectorial version of the ERM-SCBA for the description of
amorphous solids will be worked out by the present authors.

Let us mention a drawback of the present approach: The
ERM approach is based on an expansion of the averaged Green’s
function with respect to the inverse density. This means that the
theory looses its application range once the density parameter
Ŵ ∝ ρ−1 becomes much larger than one. In fact, in this regime
the spectrum becomes unstable, i.e., negative values of λ are
predicted [39, 40, 48]. However, as the force constants Kij are
all positive definite so must be the ensemble of eigenvalues.
This artifact can be avoided by using the coherent-potential
approximation (CPA) [43] instead of the SCBA. A connection
between the ERM and CPA formalism which gives a theory
valid for low densities, will be published shortly by the present
authors.
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A. APPENDIX

A.1. Detailed Calculation of the Moments
A.1.1. First Moment
From Equation (7) the first (n = 1) moment is given by the trace
of the dynamical matrix:

M(1) = 1

N

〈

tr{D}
〉

= 1

N

〈

∑

i

Dii

〉

= − 1

N

〈

∑

i,j 6=i

Dij

〉

= K0

MN

∑

i,j 6=i

〈

fij
〉

(A1)

The sum appearing in the rightmost term in this equation
is extended over N(N − 1) terms, all different each others,
thus statistically independent, and all arising from the same
probability distribution function P(f ). Therefore we can write:

M(1) = K0

M
(N − 1)〈f 〉 (A2)

The whole set of first moments, according to their definition, turn
out to be:

M(1) = K0

M
(N − 1)〈f 〉

M(1)
c = 0 (A3)

M̃(1) = K0

M
N〈f 〉

M̃(1)
c = 0

A.1.2. Second Moment
Following the same steps as in the case of the first moment, we
have:

M(2) = 1

N

〈

tr{D2}
〉

= 1

N

〈

∑

ij

DijDji

〉

= 1

N

〈

∑

ij

D2
ij

〉

=

(K0

M

)2 1

N

〈

∑

i,j

{[

∑

k 6=i

fik

]

δij − fij(1− δij)
}2〉

Expanding the square in the sum of the rightmost term in the
previous equation, keeping in ind that δ2ij = δij, (1−δij)

2 = 1−δij,

δij(1− δij)= 0):

M(2) =
(K0

M

)2 1

N

∑

i,j

〈[

∑

k 6=i

fik

]2
δij + f 2ij (1− δij)

〉

thus

M(2) =
(K0

M

)2 1

N

〈

∑

i,j

[

∑

k 6=i

fik

]2
δij +

∑

i,j

f 2ij (1− δij)
〉

=
(K0

M

)2 1

N

〈

∑

i

[

∑

k 6=i

fik

]2
+

∑

i,j 6=i

f 2ij

〉

=
(K0

M

)2 1

N

〈

∑

i

[

∑

k 6=i

fik

]2
+

(K0

M

)2 1

N

∑

i,j 6=i

f 2ij

〉

=
(K0

M

)2 1

N

〈

∑

i

[

∑

k 6=i

∑

k′ 6=i

fikfik′
]

+
∑

i,j 6=i

f 2ij

〉

In the first sum of the latter expression there areN(N−1) terms f 2
ik

(arising from k = k′ 6= i) and N(N − 1)(N − 2) terms fikfik′ with
all the three indexes i, k, k′ different each others. In the second
summation there are N(N − 1) terms f 2ij (i 6= j). Therefore:

M(2) =
(K0

M

)2 1

N

[

N(N−1)〈f 2〉 + N(N−1)(N−2)〈f 〉2
]

+
(K0

M

)2 1

N
N(N − 1)〈f 2〉

with, similar to before:

〈f 2〉 .= 1

N(N − 1)

∑

i,j 6=i

〈f 2ij 〉 (A4)

Overall:

M(2) =
(K0

M

)2[

2(N − 1)〈f 2〉 + (N − 1)(N − 2)〈f 〉2
]

(A5)

NowM
(2)
c can be easily obtained:

M(2)
c =

(K0

M

)2
(N − 1)

[

2〈f 2〉 − 〈f 〉2
]

(A6)

Then

M̂(2) =
(K0

M

)2[

2N〈f 2〉 + N(N − 2)〈f 〉2
]

(A7)

and

M̃(2)
c = 2N

(K0

M

)2[

〈f 2〉 − 〈f 〉2
]

(A8)

Summing up the different second moments (by neglecting terms
of order 1 with respect to N):

M(2) =
(K0

M

)2[

2N〈f 2〉 + N2〈f 〉2
]

M(2)
c =

(K0

M

)2
N

[

2〈f 2〉 − 〈f 〉2
]

M̂(2) =
(K0

M

)2[

2N〈f 2〉 + N2〈f 〉2
]

(A9)

M̂(2)
c =

(K0

M

)2
2N

[

〈f 2〉 − 〈f 〉2
]
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