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We relate the the Kubelka-Munk equations for the description of the intensity transfer of light
in turbid media to a one-dimensional diffusion equation, which is obtained by averaging the three-
dimensional diffusion equation over the lateral directions. This enables us to identify uniquely the
Kubelka-Munk parameters and derive expressions for diffuse reflection and transmission coefficients
including the effect of internal reflections. Without internal reflections we recover the Kubelka-
Munk formulas for these coefficients. We show that the Kubelka-Munk equations are the proper
radiative-transfer equations for the one-dimensional diffusion problem.

1. INTRODUCTION

Investigating the reflectance and transmission of tur-
bid media is a widely-used tool for materials character-
ization with applications ranging from soil science, over
medicine, the production of paper and paint, to the de-
sign of laser car headlights [1–5]. In the analysis of the ob-
served spectra the theory of diffuse reflectance and trans-
missance of Kubelka and Munk [6–8], has been widely
used. The microscopical significance of the phenomeno-
logical parameters S and K appearing in this theory was
discussed in many treatments [1, 9–18], but with differing
results for these coefficients.
Here we show that for a geometry of rectangular in-

cidence onto a turbid material, in which the scattering
is strong enough to lead to diffusive motion of the light
intensity, the Kubelka-Munk equations are equivalent to
the one-dimensional projection of the 3-dimensional dif-
fusion equation of the light intensity in the medium. This
is done in the second section. In the third section we de-
rive expressions for the diffuse reflectance and transmis-
sion coefficients, including the effect of internal reflection.
The standard Kubelka-Munk results without internal re-
flection [6, 7] are recovered. In the fourth section we show
that the Kubelka-Munk equations are, in fact, the proper
radiative-transfer equations for the quasi-onedimensional
scattering problem. In the fifth section some conclusions
are drawn.

2. DIFFUSION AND KUBELKA-MUNK

EQUATIONS

In the diffusion approximation [9, 19] the light intensity
U(r) and the current density j(r) obey the steady-state
energy-balance and Fick equations

∇j(r) = −λaU(r) + J (r)

∇U(r) = −
1

D̃
j(r) (1)

which are equivalent to the (steady-state) diffusion equa-
tion

λaU(r) = D̃∇2U(r) + J (r) (2)

Here J (r) is a source term.

The quantity D̃, which is the diffusivity divided by the
light velocity in the material1 v = c/n is given by [20]

D̃ = D/v =
1

λa + 3λt

(3)

λa, λs and λt are the inverse mean free paths due to ab-
sorption, scattering and transport. The latter two are
related as

λt = λs(1− 〈cos γ〉) (4)

where γ is the scattering angle and 〈cos γ〉 is the
anisotropy parameter.
The relation of the diffusivity to the absorption pa-

rameter λa, Eq. (3) had been subject to a dispute in the
literature. It was argued [21–23] that the time-dependent
diffusion equation2

(
∂

∂τ
+ λa

)
U(r, τ) = D̃∇2U(r, τ) + J (r) , (5)

with a diffusivity that depends on λa, violates the scaling
property, obeyed by the radiative transfer equation, that
the solution of the equation in the presence of absorption
should be of the form

U(r, τ) = e−λaτU0(r, τ) (6)

where U0(r, τ) is the solution of the equation with λa =
0. Therefore it was argued in Refs. [21–23] that the
diffusivity should not depend on the absorptivity λa. The
counter argument is, that the proper generalization of
the steady-state diffusion equation Eq. (2) is not Eq.
(5), but a damped telegrapher’s equation [19, 20], which
obeys the proper scaling. However, this equation has to
reduce to the wave equation of light for short times [20].
This condition enforces the form (3) of the diffusivity,

and not the form D̃ = [3(λa + λt)]
−1 according to the

1
c is the light velocity and n is the index of refraction.

2
τ = vt is the velocity-scaled time.
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FIG. 1. Geometry for the discussion of diffuse reflectance
and transmission with uniform illumination (plane-wave inci-
dence). We consider a slab of thickness t, which is infinitely
extended in x and y direction.

conventional literature (e.g. [9]). We repeat Durian’s
[20] argument in the Appendix.
Let us now consider the geometry of a diffusive-

reflection (or -transmission) setup with uniform illumi-
nation, i.e. an incoming plane wave in the z direction
onto a sample with surface at the z = 0 plane, thickness
t in z direction and a large incidence area A → ∞ in
(x, y) direction (see Fig. 1).

Instead of considering a three-dimensional diffusion
problem, in which the the material parameters are as-
sumed to depend only on the z direction, as usually done
[9, 24], we consider the photon density Ū(z), photon cur-
rent j̄(z), and source function J̄ (z), averaged over the
lateral (x, y) directions:

Ū(z) =
1

A

∫

A

dx dy U(r) j̄(z) =
1

A

∫

A

dx dy jz(r)

J̄ (z) =
1

A

∫

A

dx dyJ (r) (7)

It is evident that these quantities obey the following
(quasi-) one-dimensional equations

∂

∂z
j̄(z) = −λaŪ(z) + J̄ (z)

∂

∂z
Ū(z) = −

1

D̃
j̄(z) (8)

which lead to the one-dimensional diffusion equation

λaŪ(z) = D̃
∂2

∂z2
Ū(z) + J̄ (z) (9)

Defining now the incoming and outgoing currents as

I±(z) =
1

2
[Ū(z)± j̄(z)] (10)

we obtain from the diffusion equations (8) the

Kubelka-Munk equations

(
∂

∂z
+K

)
I+(z) = −S

(
I+(z)− I−(z)

)
+ J̄ (z)

(
−

∂

∂z
+K

)
I−(z) = −S

(
I−(z)− I+(z)

)
+ J̄ (z)

(11)

with

K = λa

S =
1

2

(
1

D̃
− λa

)
=

3

2
λt (12)

Eq. (12) can also be written as

1

D̃
= K + 2S (13)

3. DERIVATION OF REFLECTANCE AND

TRANSMISSION COEFFICIENTS

Instead of solving Eqs. (11) we solve the diffusion equa-
tion (9).
The general solution of the homogeneous diffusion

equation (setting J̄ = 0 in Eq. (9) ) is

Ū(z) = Aeαz +Be−αz (14)

whith the inverse diffusion length

α =

√
K/D̃ =

√
K(K + 2S) (15)

From the solution (14) we get the in- and outgoing cur-
rents [25, 26]

I±(z) =
1

2

(
A(1∓ β)eαz +B(1± β)e−αz

)
(16)

with

β = D̃α =
√
KD̃ =

√
K/(K + 2S) (17)

A. Optically thick samples

1. No reflection at z = 0

The appropriate boundary conditions corresponding to
optically thick samples without reflection at z = 0 are are

I+(0) = Ū0 Ī+(∞) = 0 (18)

The second boundary condition implies A = 0. The in-
and outgoing currents are therefore

I±(z) =
1

2
B(1± β)e−αz (19)
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From the first boundary condition we obtain

B = Ū0

2

1 + β
(20)

from wich we obtain the ingoing current at z = 0

I−(0) = Ū0

1− β

1 + β
(21)

and hence the reflectivity

R∞ =
I−(0)

I+(0)
=

1− β

1 + β
(22)

For the Kubelka-Munk function we obtain, using Eq.
(12)

S

K
=

1

2

[(
1 +R∞
1−R∞

)2

− 1

]
=

2R∞
(1−R∞)2

=
3

2

λt

λa

(23)

2. Reflection at z = 0

The first boundary condition is now

I+(0) = U0 +R0I−(0) (24)

where R0 is the reflectivity at the z = 0 boundary. In-
serting the expressions (19) for I±(0) we get

2

1 + β
I+(0) = B = R0

2

1 + β
I+(0) =

2

1 + β
U0 +R0R∞B

(25)
from which follows

B =
1 + β

2
U0

1

1−R0R∞
(26)

The current in reverse direction is given by

I← = (1−R0)I−(0) (27)

and hence

R =
1

U0

I← = R∞
1−R0

1−R0R∞
(28)

B. Optically thin samples

For optically thin samples with Reflectivity R1 at the
back (z = t) of the sample and Reflectivity R0 at the
front (z = 0) of the sample we have the boundary condi-
tions

I+(0) = Ū0 +R0I−(0) I−(t) = R1I+(t) (29)
Using the definition of R∞, Eq. (22), we get from the
boundary conditions a linear set of equations for the co-
efficients A and B

2

1 + β
I+(0) = R∞A+B

=
2

1 + β
[Ū0 +R0I−(0)]

=
2

1 + β
Ū0 +R0[A+BR∞] (30)

which can be put into the form

(
R∞ −R0 1−R∞R0

(1−R∞R1)e
αt (R∞ −R1)e

−αt

)(
A
B

)
=

J1

β

(
2

1+β
Ū0

0

)

(31)
The determinant of the coefficient matrix is

D = (R∞−R0)(R∞−R1)e
−αt−(1−R∞R0)(1−R∞R1)e

αt

(32)
So we get from Kramer’s rule

A =
Ū0

D

2

1 + β
e−αt(R∞ −R1) (33)

B = −
Ū0

D

2

1 + β
eαt(1−R1R∞) (34)

We obtain for the currents at z = 0 and at z = t:

I−(0) =
1 + β

2
[A+R∞B] (35)

=
Ū0

D

[
e−αt(R∞ −R1)−R∞eαt1−R1R∞)

]

I+(t) =
1 + β

2
[R∞Aeαt +Be−αt

=
Ū0

D

[
R2
∞ − 1

]
, (36)

from which we ge the reflectivity R

R =
I←
Ū0

= (1−R0)
I−(0)

Ū0

= (1−R0)R∞
eαt(1−R∞R1)− e−αt(1− R1

R∞
)

(1−R∞R0)(1−R∞R1)eαt − (R∞ −R0)(R∞ −R1)e−αt
(37)
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and the transmittivity T

T =
I+(t)

Ū0

=
1−R2

∞

(1−R∞R0)(1−R∞R1)eαt − (R∞ −R0)(R∞ −R1)e−αt
(38)

Introducing the Kubelka-Munk parameters

a =
1

2

(
1

R∞
+R∞

)
b = α/S =

1

2

(
1

R∞
−R∞

)
(39)

we get

R = (1−R0)
R1b cosh(αt)R1b+ (1−R1a) sinh(αt)

b(1−R0R1) cosh(αt) + [a(1−R0R1)−R0 −R1] sinh(αt)
(40)

T =
b

b(1−R0R1) cosh(αt) + [a(1−R0R1)−R0 −R1] sinh(αt)
(41)

If we set R0 = 0, we get the formulas of Kubelka (1948)
[7]

R =
1−R1a+R1b coth(αt)

a−R1 + b coth(αt)
(42)

and

T =
b

b cosh(αt) + (a−R1) sinh(αt)
(43)

For R0 = R1 = 0 we get the standard Kubelka-Munk
formulas [7, 25, 26], which do not contain the effect of
internal reflections.

R =
eαt + e−αt

eαt
1

R∞
− e−αtR∞

=
sinhαt

a sinhαt+ b coshαt
(44)

T =

1

R∞
−R∞

eαt
1

R∞
− e−αtR∞

=
b

a sinhαt+ b coshαt
(45)

Another interesting limit is that of very small R∞, i.e.
R∞ → 0:

R =
R1e

−αt

eαt −R0R1e−αt

=
R1e

−2αt

1−R0R1e−2αt

(46)

T =
1

eαt −R0R1e−αt

=
e−αt

1−R0R1e−2αt

(47)

4. KUBELKA-MUNK EQUATIONS AS

ONE-DIMENSIONAL RADIATIVE-TRANSFER

EQUATIONS

We now want to demonstrate that the Kubelka-
Munk equations (11) are the proper radiadive-transfer
equations for the diffuse-reflection geometry depicted in
Fig. 1.
We recall the three-dimensional radiative transfer

equations of the light intensity in a turbid medium

[λa + s · ∇]I(r, s) = −
∑

s
′

qss′

(
I(r, s)− I(r, s′)

)

= −λsI(r, s) +
∑

s
′

qss′I(r, s
′) (48)

I(r, s) is the distribution density of light rays passing
through r with the direction s = k/k, where k is the
wave vector. qss′ = |f(s, s′)|2 is the phase function, i.e.
the scattering cross-section from s to s′ with f(s, s′) being
the corresponding amplitude.

∑
s
′ is an integral over

the entire solid angle, with the original direction s being
excluded. The second line of Eq. (48) is obtained from
the sum rule

∑

s
′

qss′ =
∑

s
′

qs′s = λs (49)

The three-dimensional diffusion equations (1) and (2)
are obtained from Eq. (48) by (i) expanding the angle
dependence of I(r, s) and q(s, sh′) ≈ q(s · s′) = q(cos γ)
in terms of Legendre polynomials and stop after the 1st
term (P1 approximation) and then integrating s over the
total solid angle [9, 24]
The two terms of the three-dimensional I(r, s) in P1

approximation are [9, 19]

I(r, s) = A3dU(r) +B3ds · j(r) (50)
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with

U(r) =
∑

s

I(r, s) , j(r) =
∑

s

sI(r, s) ,

A3d =
1∑
s

= 1/4π B3d =
1∑
s
s · s

= 3/4π

The corresponding expression in one dimension is

I(x, s) = A1dU(x) +B1ds · j(x) (51)

with A1d = B1d = 1/
∑
s

= 1/2, which is just Eq. (10).

Because we have shown in the beginning that the diffu-
sion equations (9) are equivalent to the Kubelka-Munk
equations (11) we conclude that the P1 approximation,
and hence the diffusion approximation in one dimension
is exact. This has already been pointed out in Refs.
[19, 27].

So we can state that the Kubelka-Munk equations
(11) are (i) identical to the three-dimensional diffusion
equation, averaged over the lateral dimensions, and (ii)
are the proper radiative-transfer equations for the one-
dimensional diffuse-reflection problem.

5. CONCLUSION

We have shown that the Kubelka-Munk equations are
identical to the one-dimensional diffusion equation, which
is obtained by averaging the three-dimensional diffusion
equation with respect to the lateral directions. We obtain
as Kubelka-Munk parametersK = λa (absorptive inverse
scattering length) and S = 3

2
λt =

3
2
λs(1−〈cos γ〉), where

λt and λs are the transport and scattering inverse scat-
tering lengths, and 〈cos γ〉 is the anisotropy parameter.
Using the 1d diffusion equation we have derived formu-
las for the diffuse reflection and transmission, which in-
cludes possible internal reflections. In the absence of in-
ternal reflections these expressions reduce to those given
by Kubelka and Munk. We have demonstrated that the
Kubelka-Munk equations are the appropriate radiative

transfer equations for the reflection problem with plane-
wave incidence (uniform illumination).
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APPENDIX: DIFFUSION AND THE

TELEGRAPHER’S EQUATION

If we include the time dependence the P1-
approximated radiative-transfer equations do not
give a diffusion equation, but instead a telegrapher’s
equation [19]. This equation preserves the λa − τ scaling
of the solution U(r, τ)

U(r, τ) = e−λaτU0(r, τ) (52)

where U0(r, τ) is the solution in the absence of absorp-
tion.
Durian [20] has shown that the most general form of a

telegrapher’s equation, which preserves this scaling is

3α
∂2

dτ2
U(r, τ) + 3

(
λt + αλa

)
∂

dτ
U(r, τ) (53)

+3λa

(
λt + αλa

)
U(r, τ) = ∇2U(r, τ)

In the steady state the usual steady-state diffusion equa-
tion (with still unspecified prefactor α of λa) is obtained.
It can be easily checked that Eq. (53) fulfils the λa − τ
scaling for any value of α. Durian [20] now argues that
for small times, which describes the initial spreading of
a point source, the proper wave equation

∂2

dτ2
U(r, τ) = ∇2U(r, τ) (54)

must be recovered. This enforces the value of α = 1
3
, and

hence a diffusivity of the form of Eq. (3).
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Kubelka-Munk theory in describing optical properties of
paper (ii), Techn. Gazette 19, 191 (2012).

[16] N. J. Elton and A. Legrix, Wavelength dependence of
Kubelka-Munk scattering spectra for studies of tio2 mi-
crostructure and aggregation in paints, J. Coat. Technol.
Res. 11, 555 (2014).

[17] C. Sandoval and A. D. Kim, Deriving Kubelka-Munk the-
ory from radiative transport, J. Opt. Soc. Am. A 31, 628
(2014).

[18] B. Ilan and A. D. Kim, Radiative transfer of light in

strongly-scattering media, in Light scattering reviews,
Vol. 3, edited by A. Kokhanovsky (Springer, Heidelberg,
2019).
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