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5Dipartimento di Fisica, Università di Roma “La Sapienza”, P’le Aldo Moro 2, I-00185, Roma, Italy

We consider Maxwell’s equations in a 3-dimensional material, in which both, the electric per-
mittivity, as well as the magnetic permeability, fluctuate in space. Differently from all previous
treatments of the disordered electromagnetic problem, we transform Maxwell’s equations and the
electric and magnetic fields in such a way that the linear operator in the resulting secular equations
is manifestly Hermitian, in order to deal with a proper eigenvalue problem. As an application of our
general formalism, we use an appropriate version of the Coherent-Potential approximation (CPA) to
calculate the photon density of states and scattering-mean-free path. Applying standard localization
theory, we find that in the presence of both electric and magnetic disorder the spectral range of
Anderson localization appears to be much larger than in the case of electric (or magnetic) disorder
only. Our result could explain the absence of experimental evidence of 3D Anderson localization of
light (all the existing experiments has been performed with electric disorder only) and pave the way
towards a successful search of this, up to now, elusive phenomenon.

INTRODUCTION

Understanding the propagation and scattering of elec-
tromagnetic radiation in random media, especially visible
light, is an issue, which is important in different parts of
science [1–7]. A particularly interesting feature of waves
in a disordered environment is the possibility of localiza-
tion, i.e. the absence of diffusion, demonstrated first for
electron wave functions by Anderson [8]. Anderson lo-
calization (AL) arises from the interference of the waves
scattered by the random inhomogeneities of the medium
[6, 9–12]. This phenomenon occurs with all kinds of
waves, including atomic-matter and gravitational waves
[13–15].

Localization of classical waves has first been discussed
by John et al. [16, 17] for acoustical and later for elec-
tromagnetic waves (light) [18, 19]. The successful obser-
vation of weak localization of light (the back-scattering
cone) [20] created an impact for looking for strong AL of
light [21–25]. It was realized [26, 27] that the chances for
the observation of this phenomenon are much higher in
dimensionally reduced systems. This has been success-
fully demonstrated in paraxial structures with transverse
(2-dimensional) disorder [28, 29] and two-dimensional
photonic crystals [30]. In 3-dimensional media with a
spatially fluctuating permittivity, however, until now, AL
has not been found [22, 31–35]. Indeed, 3D localiza-
tion effects are often obscured by absorption or fluores-
cence processes, making its experimental demonstration
extremely elusive [35]. Recently, the possibility of obtain-
ing Anderson localization in 3D systems has been made
plausible in numerical simulations of (i) hyperuniform
amorphous photonic materials [36, 37], and (ii) systems
with overlapping spherical, perfectly conducting obsta-

cles [38].
On the other hand, the theoretical description of AL of

light is, until now, built on the ground of a mathemati-
cally questionable mapping of Maxwell’s equations to An-
derson’s Schrödinger equation of an electron in a random
potential [18, 19]. This mapping, which was taken over by
the subsequent literature [6, 27, 39–41], started with the
Helmholtz equation for a stationary frequency-dependent
electric field E(r, ω) in the presence of a spatially fluc-
tuating permittivity ε(r), derived from Maxwell’s equa-
tions1

ω2ε(r)E(r, ω) =
1

µ0
∇× [∇×E(r, ω)] , (1)

This equation was transformed in the following way:
(i) the double curl was converted to −∇2, ignoring that
∇ ·E 6= 0 for∇ε 6= 0, (ii) the coefficient of E on the LHS,
which features the spectral parameter ω2 of the eigen-
value equation, was rewritten as ω2ε0 + ω2[ε(r) − ε0],
where the second term was re-interpreted as an ω de-
pendent potential (changing completely the physical con-
tent), and (iii) the eigenvalue problem associated with
Eq. (1) was neither formulated nor solved properly (see
below).

In the case of transverse localization this truncated
and ill-posed equation (called “potential-type approach”
by Schirmacher et al. [42]) produced results, which were
at variance with experiment: A wavelength dependence
of the localization length, predicted on base of this equa-
tion [27, 43], was not observed experimentally and is not

1 Here µ0 = 1/ε0c20 is the magnetic permeability of the vacuum, ε0
is the electric permittivity of the vacuum and c0 is the vacuum
light velocity.
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predicted by a proper treatment [42]. In view of all these
inconsistencies it is apparent that a mean-field theory,
based on a consistently formulated Hermitian eigenvalue
problem of Maxwell theory in the presence of disorder, is
urgently called for.

Here, we present such a mean-field theory of disorder,
based on a properly formulated eigenvalue problem. In
this theory we allow both for electric (spatially varying
electric permittivity ε(r)) and magnetic disorder (spa-
tially varying magnetic permeability µ(r)). The theory
is an appropriate version of the coherent-potential ap-
proximation (CPA), derived by S. Köhler and two of the
present authors for elastic waves in the presence of dis-
order [44].

Applying the CPA results for the scattering mean-free
path and the density of states to standard localization
theory suggests that by combining electric and magnetic
disorder the chances for observing AL of light in three
dimensions are greatly enhanced with respect to the case
where only one quantity (ε(r) or µ(r)) is left to vary.

We start by defining dimensionless electric and mag-
netic moduli Mε(r) := ε0/ε(r) and Mµ(r) := µ0/µ(r).
The generalization of (1) for including magnetic disorder
takes the form2

ω2

c20
E(r, ω) = Mε(r)∇× [Mµ(r)∇×E(r, ω)]

=: LEE(r, ω) . (2)

The operator LE on the RHS of this equation is not Her-
mitian, if the (“naive”) definition of the scalar product
< E1|E2 >=

∫
d3rE∗1(r) ·E2(r) is used. Only if we define

[46]

< E1|E2 >:=

∫
d3rM−1

ε (r)E∗1(r) ·E2(r) , (3)

the operator LE has the Hermitian property:

< E1|LEE2 > =

∫
d3rE∗1(r) ·

[
∇×Mµ(r)[∇×E2(r)]

]
=

∫
d3rMµ(r)

[
∇×E∗1(r)

]
·
[
∇×E2(r)

]
=

∫
d3rE2(r) ·

[
∇×Mµ(r)[∇×E∗1(r)]

]
!
=< E2|LEE1 >

∗ . (4)

The second line guarantees the positiveness of the spec-
trum. It is easily verified that for the scalar product
without the fluctuating permittivity included, LE is not
Hermitian, because extra terms involving ∇Mε are ob-
tained.

2 Exactly the same equation is obtained for the vector potential
A(r, ω), defined as ∇ ×A(r, ω) = µ(r)H(r, ω), if the Coulomb
gauge ∇ ·A = 0 is applied [45].

Similarly an equation for the magnetic field can be
derived from Maxwell’s equations

ω2

c20
H(r, ω) = Mµ(r)∇×Mε(r)[∇×H(r, ω)]

=: LHH(r, ω) . (5)

Here, the operator LH is Hermitian, if the scalar prod-
uct includes a factor M−1

µ (r). In the case of pure electric
disorder (Mµ = const) no special definition of the scalar
product is needed. This (properly defined) eigenvalue
equation for electric disorder was used recently for treat-
ing transverse two-dimensional AL [42].

It is remarkable [45] that for ω 6= 0 Eqs. (2) and (5)
automatically guarantee the transversality conditions

∇·
[
E(r, ω)/Mε(r)

]
= 0; ∇·

[
H(r, ω)/Mµ(r)

]
= 0 . (6)

In order to formulate an analytic theory for the
disorder-averaged physical quantities in a system de-
scribed by (2) and (5) it is rather disadvantageous to
work with the disorder dependent scalar product. This
can be avoided using symmetrized fields [45, 47, 48]

Ẽ := E/
√
Mε(r) and H̃ := H/

√
Mµ(r) which obey the

symmetrized Helmholtz equations

ω2

c20
Ẽ(r, ω) = M1/2

ε (r)∇×Mµ(r)[∇×M1/2
ε (r)Ẽ(r, ω)]

=: LẼẼ(r, ω) , (7)

ω2

c20
H̃(r, ω) = M1/2

µ (r)∇×Mε(r)[∇×M1/2
µ (r)H̃(r, ω)]

=: LH̃H̃(r, ω) . (8)

Eqs. (7) and (8) now constitute conventional eigenvalue
equations with operators LẼ,LH̃ that are Hermitian with

respect to the scalar products < Ẽ1|Ẽ2 >=
∫
d3rẼ∗1(r) ·

Ẽ2(r) and < H̃1|H̃2 >=
∫
d3rH̃∗1(r) · H̃2(r).

In this transformed way the differential operators are
manifestly Hermitian with respect to the conventional
definition of the scalar product. In this form the eigen-
value problem can be dealt with in the usual way, using
functional integrals and replica theory [44, 49].

Generalizing the derivation of Köhler et al. [44] we es-
tablish a coherent-potential approximation (CPA), based
on Eqs. (7), (8), along the lines of our peviou s work on
elasticity.

The CPA arises as a saddle-point equation of an effec-
tive field theory, constructed by field-theoretic methods
[44]. This variational derivation is equivalent to the tra-
ditional method [50] requiring that the scattering T ma-
trix of the “perturbation” Mα,i −Mα(z), (α = ε, µ) be
zero on the average. In the CPA the disordered system is
replaced by an effective medium, in which the fluctuat-
ing quantities (in our case Mε(r) and Mµ(r)) are replaced
by uniform, but frequency-dependent, complex quantities
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Mε(z) and Mµ(z), where z = 1
c0
ω+ iη, (η is an infinitesi-

mal positive real number), except inside a cavity around
the midpoint ri. The volume of the cavity is Vc, and in
this region Mε,µ take their fluctuating values evaluated at
ri Mε,i

.
= Mε(ri) and Mµ,i

.
= Mµ(ri). Within CPA these

quantities are assumed to be uncorrelated3, which means
that Vc must be larger than the correlation volume ξ3,
where ξ is the correlation length. This. naturally intro-
duces an ultraviolet wavenumber cutoff kξ ∝ ξ−1 into the
effective medium. In our treatment, this cutoff replaces
the radius of the first Brillouin zone (in crystals) and the
Debye cutoff (in glasses) for the definition of the density
of states g(ω) which samples the states relevant for the
disorder scattering:

g(ω) = 2ωρ(λ) = 2ω
1

π
Im
{
G(z)

}
, (9)

where ρ(λ) is the density of levels (eigenvalues), G(z) is
the local Green’s function

G(z) =
3

k3
ξ

∫ kξ

0

dkk2G(k, z) , (10)

and G(k, z) is the wavenumber dependent Green’s func-
tion of the effective medium

G(k, z) =
1

−z2 + k2Mε(z)Mµ(z)
. (11)

We emphasize that – in contrast to the PT treatment
using the nonlinear-sigma-model theory [18, 19] - in CPA
the small parameter for justifying the saddle-point ap-
proximation is not the relative variance of the fluctuating
quantities [49], but the ratio Vc/V between the cavity vol-
ume and the volume V of the sample [44]. This enables
to treat the case of strong disorder, where the relative
variance may take any value.

The CPA equations read [44]

0 =

〈
Mε,i −Mε(z)

1 + q
(
Mε,i −Mε(z)

)
Λε(z)

〉
ε

(12)

3 A generalization of the traditional CPA for electrons for the in-
clusion of correlated disorder exists [51]. In this treatment the k
integral in Eq. (10) up to the cutoff kξ ∝ ξ−1 has to be replaced
by an integral over the Green’s function G(k, z), multiplied by
the k dependent correlation function C(k), normalized by its
value at k = 0. This function equals 1 for wavenumbers k � kξ
and then smoothly decays near k = kξ. So, the present CPA
just replaces this “smooth cutoff” of the correlated treatment by
a sharp one. The essential ingredient of the spatial correlations,
namely the correlation length is included in the present version
of the CPA. Long-range correlations, which are relevant in hy-
peruniform materials [36, 37, 52], and which govern the k → 0
behavior of the correlations, are not included.

and

0 =

〈
Mµ,i −Mµ(z)

1 + q
(
Mµ,i −Mµ(z)

)
Λµ(z)

〉
µ

(13)

with q = Vck
3
ξ/3π

2. The parameter q must be smaller
than 1 and can be interpreted as a mean-field critical
percolation threshold [44]. Because the critical percola-
tion threshold for 3-dimensional continuum percolation
is around 0.3, we take q = 0.3 in the numerical calcula-
tions that we performed to show graphically the effect of
the disorder.

The quantities Λε,µ(z) are defined by

Λε,µ(z) =
1

Mε,µ(z)

[
1 + z2G(z)

]
(14)

We note that the CPA equations (12) and (13) are
completely symmetric with respect to ε and µ, i.e. they
hold for both, Eqs (7) and (8). We further note that if the
distributions of the two spatially fluctuating quantities
are the same, P(Mε,i) = P(Mµ,i), it results Mε(z) =
Mµ(z). Therefore the CPA equations reduce to the ones
one would obtain if one would take Mε(r) = Mµ(r) from
the outset [53].

The averages 〈. . . 〉ε,µ are to be performed with dis-
tribution densities Pε(Mε,i) and Pµ(Mµ,i). For our
calculations, in order to be able to treat the case
of strong disorder, we take log-normal distributions

[44] P(x) = [
√

2πσx]−1e− ln2(x/x(0))/2σ2

with medians

x(0) = M
(0)
ε =M

(0)
µ = 1. The relative variances of the two

distributions γε = 〈(Mε − 〈Mε〉)2〉/〈Mε〉2 = eσ
2
ε − 1 and

γµ = 〈(Mµ − 〈Mµ〉)2〉/〈Mµ〉2 = eσ
2
µ − 1 are the control

parameters of the theory.
From the Green’s function (11) we can read off the

formula for the (scattering) mean-free path

1

`(ω)
=

2ω

c0
Im

{
1[

Mε(z)Mµ(z)
]1/2

}
(15)

and the speed of light inside the medium:

v(ω) = c0 Re
{[
Mε(z)Mµ(z)

]1/2}
(16)

In turn, from these quantities we can calculate the
frequency-dependent (unrenormalized) diffusivity

D0(ω) =
1

3
v(ω)`(ω) . (17)

Before we use the CPA for estimating the localization
properties of disordered electromagnetic systems at fi-
nite frequency ω, we would like to comment on the limit
ω → 0. As pointed out by Köhler et al. [44], in this limit
the effective-medium expression of Bruggeman [54] for
the permittivity of mixed dielectric materials is obtained.
Contrary to this, the CPA applied to the potential-type
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FIG. 1. “Conductivity” g̃(ω) = g(ω)D(ω) against frequency,
calculated in CPA for a log-normal distribution of Mε and
Mµ, truncated at Mε = Mµ = 0. Dashed blue lines: Only
one quantity, say Mε(r) is fluctuating, the relative variance

γε = eσ
2
ε − 1 increases as γε = 0.25, 0.5, 1., 1.5, 2. 2.5.

Continuous red lines: Both quantities Mε(r) and Mµ(r) are
fluctuating, one of the variances, say, γε is held fixed at 2.5,
the other variance increases from γµ = 0.25 to γµ = 2.5. in
steps as before.
Inset: density of eigenvalues ρ(λ) for the same CPA calcula-
tions.
The full circles in the main panel mark the end of the spec-
trum, given by ρ(λ) in the inset.

treatment of Maxwell’s equation [6], mentioned in the
beginning, gives just the arithmetic average of the per-
mittivity in the ω → 0 limit, because the non-trivial in-
fluence of the disorder in this approach is multiplied by
ω2 and just vanishes in the DC limit. This shows once
more that a proper treatment of Maxwell’s equations is
necessary.

We now turn to the discussion of the impact of elec-
trical and magnetic disorder on Anderson localization of
light. This phenomenon is known [9] to arise from inter-
ference of closed scattering paths. According to the self-
consistent theory of Anderson localization [12, 55, 56] in
the version used for classical waves [52, 57–59] the renor-
malized diffusion coefficient, which includes the localiza-
tion phenomena, is given by

D(Ω, ω) = D0(ω)−D(Ω, ω)P0(Ω, ω) (18)

Here Ω denotes the frequency corresponding to the dif-
fusion dynamics of the radiation, and P0(Ω, ω) denotes
the return probability

P0(Ω, ω) =
1

πg(ω)

∑
|q|<q0

1

−iΩ + q2D(Ω, ω)
. (19)

The upper cutoff q0 has been introduced, because the in-
terference is only effective in the q region, where the diffu-
sion approximation holds. In the original papers on elec-
tron localization [12, 55, 56] the inverse mean-free path

`−1 has been taken for q0, in the literature on phonon
localization [58, 59] the Debye cutoff kD, instead. Here
we choose to take the correlation cutoff q0 = kξ as upper
cutoff. The self-consistent Eq. (18) can now be written
in the form

D(Ω, ω) = D0(ω)− 3

πk3
ξg(ω)

∫ kξ

0

dq
q2

q2 − iΩ
D(Ω,ω)

(20)

Localization or otherwise is now defined to occur if the
quantity

lim
Ω→0

D(Ω, ω) (21)

vanishes or not.
We now assume that a frequency ω∗ exists (mobility

edge) which separates the extended states (ω < ω∗) from
the localized ones (ω > ω∗). In the localized regime the
quantity −iΩ/D(Ω, ω) becomes a real quantity, namely
the square of the inverse localization length. Right at the
mobility edge ω = ω∗, this quantity becomes zero, and
we have

D(Ω, ω) =

[
1− 3

πk2
ξg(ω)D0(ω)

]
(22)

On the other hand, at the mobility edge, D(Ω, ω) = 0, so
that the dimensionless quantity (“conductivity”)

g̃(ω) = k2
ξg(ω)D0(ω) (23)

has to be equal to 3/π ≈ 1 at the mobility edge. Values
of g̃(ω) larger than ∼1, therefore, lead to delocalization,
values smaller than ∼1 to localization.

In Fig. 1 we have plotted this quantity, calculated in
CPA against the dimensionless spectral parameter λ =
ω2/c20k

2
ξ . We consider two scenarios:

(i) Only one of the moduli, say, Mε(r) is considered to
have spatial fluctuations with variance γε increasing
from 0.25 to 2.5: electric (or magnetic) disorder
only (dashed blue lines).

(ii) Setting one of the variances, say, γµ = 2.5 and
increasing the other, γε from 0.25 to 2.5: Com-
bined electric and magnetic disorder (continuous
red lines).

It is seen that in the case of the combined electric and
magnetic disorder the values of g̃ are much lower and also
the spectral range for which g̃ is smaller than ∼ 1 is much
more extended. Fig. 1 comprises the central result of
the present contribution. Our results may explain, why
with electric disorder only (or perhaps magnetic disor-
der only) it is very hard to obtain Anderson localization,
whereas for the combination of both, the odds for observ-
ing Anderson localization of light in three dimension are
increased appreciably.
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We therefore recommend for meeting the challenge of
experimentally observing 3D Anderson localization the
consideration of disordered materials with both electric
and magnetic disorder. Such materials could be e.g.
polymeric materials with superparamagnetic inclusions
[60].

Let us now discuss the recent numerical results of
Yamilov et al. [38] in the light of our findings. The
authors considered two cases of systems with the disor-
der induced by overlapping spherical obstacles. These
spheres were designed to have in the first case a high
electric permittivity, in the second case perfect electric
conduction inside the spheres. In their first system with
high dielectric permittivity of the spheres they consider
the case of electric disorder only. In agreement with our
results they find no localization. On the other hand,
by using perfectly conducting obstacles they completely
expel the time-varying electric and magnetic fields from
the obstacles, just effectively introducing a combination
of electric and magnetic disorder. Thus their numeri-
cal observation of Anderson localization for the perfectly
conducting obstacles corresponds to our prediction of lo-
calization for the case of combined electric and magnetic
disorder.

Summarizing, we have presented a mean-field theory
for combined electric and magnetic disorder based on
eigenvalue equations derived from Maxwell’s equations,
which involve manifestly Hermitian operators. The re-
sults for the dimensionless conductance suggest systems
with combined electric and magnetic disorder as candi-
dates for 3D Anderson localization.
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