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The vibrational excitations of disordered solids differ appreciably from those of crystals. The
reason for this anomalous behaviour can be traced to the absence of the lattice symmetry, i.e.,
to the structural disorder. We review the experimental findings and simulational results of the
vibrational spectrum of disordered solids, in particular of glasses. We further give an overview of
the existent pertinent models and theoretical treatments for explaining the vibrational anomalies,
in particular the enhancement of the vibrational density of states with respect to the Debye law
(“boson peak”).
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I. INTRODUCTION

The vibrational excitations of disordered solids, in par-
ticular of glasses, have attracted the attention of exper-
imental [21, 33, 35, 42, 67, 101, 124, 134, 169, 206, 215]
and theoretical work [32, 53, 69, 72, 73, 79, 90, 93, 98,
104, 113, 116, 118, 120, 125, 136, 152, 153, 155–157, 171]
(to cite only a few at the beginning) in the last three-
quarter century. In crystals the harmonic vibrational ex-
citations – the phonons – can be satisfactorily described
by the symmetry properties of the lattice [15]. In modern
crystalline-lattice dynamics investigations [123], there-
fore, the emphasis is on anharmonic effects. On the other
hand, in disordered solids, due to the absence of the lat-
tice symmeties, even the theoretical descriptions of the
harmonic vibrational excitations poses a challenge. Sci-
entific efforts facing this challenge are still a very active
part of condensed-matter research.

1. Density of states (DOS)

In a solid the harmonic part of the potential energy, i.e.
the part, which is bilinear in the displacements ui(r, t)
(where i denotes the center of mass of a molecule) can

be written as Epot =
∑

ij
1
2ui

↔
Dij uj with the dynamical

(or Hessian) matrix

Dαβ
ij =

∂

∂rαi

∂

∂rβj
Epot(r1, . . . , rN ) . (1)

The DOS is then given by

g(ω) =
1

3N

〈
3N∑
µ=1

δ(ω−ωµ)

〉
, (2)

where the eigenfrequency ωµ are the square-roots of the
eigenvalues λµ = ω2

µ of the dynamical matrix, and N is
the number of atoms/molecules.
We have started our review of vibrational excitations

in disordered solids by introducing the dynamical ma-
trix and the corresponding DOS, because this concept
remains valid going from crystalline to amorphous solids.
Concepts like Bloch’s theorem, leading to dispersion re-
lations in reciprocal space are not valid in the absence
of crystalline order, but the DOS, the normalized his-
togram of eigenfrequencies, can be considered for any
type of arrangements of the atomic or molecular sites
ri. This is the reason, why most of the experimental and
simulational efforts dedicated to the vibrational spectra
of glasses1 are aimed at finding out the DOS, i.e. the
vibrational spectrum of the material.

2. The boson peak

A paradigm for the anomalous vibrational features of
glasses is the so-called boson peak (BP), which is an en-
hancement of the DOS with respect to Debye’s g(ω) ∝ ω2

1 We take “glasses” and “amorphous solids” as synonyms, inde-
pendent of the preparation process.
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FIG. 1. Top: Specific heat, divided by T 3 of several materials
against temperature T (from [213]).
Bottom: Thermal conductivity of several glassy materials
against temperature (from [70]). Note that, compared to
glassy SiO2, at T= 10 K, the thermal conductivity of α-quartz
is 4 orders of magnitude larger [25, 36].

law. The latter transforms to a T 3 law for the tem-
perature dependence of the specific heat C(T ) [15]. In
contrast to Debye’s C(T ) ∝ T 3 prediction, in glasses at
low temperatures, C(T ) behaves completely in a differ-
ent way. At very low temperatures, in the range around
∼ 1K, C(T ) varies almost linearly with temperature
[100, 215], and the thermal conductivity (which is or-
ders of magnitude smaller than that of crystals) quadrat-
ically [25, 36, 100, 215]. This behaviour has been suc-
cessfully ascribed to bistable states in the amorphous
structure, between which quantum-mechanical tunnel-
ing becomes possible (tunneling states, two-level systems
[10, 140, 141]). At slightly higher temperatures, the spe-
cific heat of glasses still does not follow Debye’s T 3 law.
If plotted as CV (T )/T

3 one observes a broad maximum
around 10 K, see the upper panel of Fig. 1. In the
same temperature regime, the temperature variation of
the thermal conductivity exhibits a pronounced shoul-
der, as is shown in the lower panel of Fig. 1. It seems
likely that this deviation from Debye’s C(T ) ∝ T 3 law
must be due to a deviation of Debye’s g(ω) ∝ ω2 law

FIG. 2. Raman spectrum of glassy and crystalline SiO2 (from
Shuker and Gammon [173]).

for the DOS. Indeed, in Raman spectra, which – in some
way (see below) – represent the DOS, a broad contin-
uum in the ∼ 50 cm−1 (=̂ 1.3 THz) range2 was found,
in a frequency region, where there is no intensity in the
corresponding crystal, see Fig. 2. It was further found
that the anomalous Raman spectrum of glasses in the
frequency range below 100 cm−1 precisely follows the
temperature dependence of the boson occupation factor
n(ω) + 1 = [1 − e−ℏω/kBT ]−1. For this reason the low-
frequency spectral anomaly in the 1 THz range was called
“boson peak” [90]. Shuker and Gammon [172] argued,
that in disordered solids the selection rules for Raman
scattering [29] do not apply and came up with a formula
for the (depolarized = VH) Raman spectrum

IV H(ω) ∝ C(ω)[n(ω) + 1]
g(ω)

ω
. (3)

Here C(ω) is the so-called light-vibration coupling coeffi-
cient [90, 161, 162, 198, 199], which Shuker and Gammon
[172] assumed to be frequency-independent. Now, if the
temperature dependence of the Raman intensity is due
to the boson occupation factor, the conclusion is that the
spectrum g(ω)/ω must be temperature independent, and
that, consequently, the BP anomaly in the DOS must be
a harmonic effect. This means that the boson peak must
be a feature of the harmonic degrees of freedom3.
Further, in a seminal paper Buchenau et al. [33], us-

ing inelastic neutron scattering, showed a strong devia-
tion of the DOS of SiO2 glass from the ω2 law, which, if

2 The Raman intensity is usually reported as a function of ν/c =
ω/2πc, which has the unit of an inverse length. 32 cm−1 (in the
Raman slang “32 wavenumbers”) correspond to ν = 1 THz and
to hν = ℏω = 4 meV.

3 Recent theoretical efforts, claiming that the BP anomaly would
be of anharmonic origin [17], turned out to be mathematically
in error [174].
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represented as g(ω)/ω2 shows up as a maximum. They
identified this with the Raman boson peak, although the
Raman (would-be) DOS did not agree to that extracted
from the neutron spectra. In order to cope with this
discrepancy, one introduced the frequency dependence
of the coefficient C(ω) [90, 161, 162, 198, 199], into the
Shuker-Gammon formula (3). Because the deviation of
the specific heat of glasses from the T 3 law is due to the
boson peak in the DOS, the maximum in the tempera-
ture variation of C(T )/T 3 of glasses is also called boson
peak [146].

The boson peak and related vibrational anomalies are
observed in most glassy or disordered materials, and al-
most the entire scientific work on vibrational excitations
in glasses has been devoted to uncover the nature of the
(harmonic) vibrational wave functions associated with
the BP. The present review simply cannot cover the over-
whelmingly large amount of literature published on this
subject. We just select some key results, indicating in
some way or another the origin of the anomaly. In fact,
as we shall state in the conclusion, the matter is still
highly controversial.

We start (section II.) by enumerating (most of) the
suggestions put forward in the past for explaining the
boson peak. In sections III. and IV. we try to give an
overview over the vast amount of experimental and sim-
ulational work on the present topic. In the final section
V. we discuss the present status of the interpretation of
the boson-peak-related vibrational anomalies of glasses.

II. MODELS AND SUGGESTIONS FOR
EXPLAINING THE BP ANOMALIES

In contrast to the rather convincing explanation of the
linear-T behaviour of the specific heat and the T 2 be-
haviour of the thermal conductivity in the ∼ 1 K range
in terms of bistable tunneling defects [10, 140] the bo-
son peak (BP) was from the beginning subject to rather
diverse modelling, which continues until now. We here
give a brief historical overview and refer to the quoted
original literature for more details.

• Karpov, Klinger and Ignat’ev [93] tried to formu-
late a classical version of the tunneling model, the soft-
potential model. This model features a set of structural
defects with anharmonic potentials with very small posi-
tive and negative quadratic (stiffness) terms. The (renor-
malized) density of states of such defects can be shown
[31, 32, 78, 80, 93] to vary as ω4, due to a swallow-
tail singularity in the classification of catastrophe theory
[14, 191].

• Orbach [132] conjectured that glasses (in particu-
lar network glasses) might exhibit a self-similar (frac-
tal) structure. Such structures, imbedded in a homo-
geneous medium at larger scales were known to exhibit
a transition from a Debye-type spectrum g(ω) ∝ ω2

waves (phonons) at low frequencies (large wavelengths)
to fractal-type behaviour g(ω) ∝ ω1/3 at higher frequen-

FIG. 3. Sketch of a typical radial distribution function g(r) of
an amorphous (monatomic) structure, which approaches the
decorrelated value g(r) → 1.

cies (“phonon-fracton crossover”, Alexander and Orbach
[6], Nakayama et al. [129]). Simulations of percolating
networks, which are examples of such imbedded fractal
structures [129, 211] indeed showed such a crossover, but,
unfortunately, no boson-peak-type enhancement. Fur-
thermore, no traces of self-similar structure were found
experimentally in glasses, except in loose structures such
as aerogels [197] or biopolymers [126].
• According to an argument of Ioffe and Regel [87],

(electronic) waves with a scattering mean-free path ℓ
smaller than its wavelength cannot exist. This lead Mott
[128] to the conclusion that waves in the presence of
disorder, which would produce an attenuation with a
mean-free path shorter than the wavelength, become lo-
calized by disorder (Anderson-localization, [1, 9]). This
argument was taken over in papers discussing BP-related
anomalies [4, 63, 66, 75], in which it was conjectured that
the anomalies are due to phonon localization [91, 94].
• A step forward in the understanding of the BP

anomalies was the investigation of disordered-force con-
stant models by making contact with hopping transport
in disordered systems. It was noted by Alexander et al.
[5] that the excitation dynamics of a harmonic system
of masses m connected with force constants Kij , which
obeys an equation of motion

m
d2

dt2
ui = −

∑
j

Kij(ui − uj) (4)

with scalar “displacements” ui = u(ri) can be mapped to
a disordered random-walk (hopping) problem by replac-
ing the double time derivative with a single one. Schirma-
cher and Wagener [158] noted that the cross-over of the
AC conductivity σ(ω) from being frequency-independent
to a strong disorder-induced frequency dependence [59]
corresponds in the analogous harmonic force constant
system to a cross-over from a frequency independent to
a frequency dependent (squared) sound velocity (elastic
constant). They realized that this crossover produces a
boson peak and corroborated it with calculations by the
coherent-potential approximation (CPA) [159, 160]. Us-
ing the self-consistent localization theory [61, 200], Schir-
macher and Wagener [160] predicted phonon Anderson
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FIG. 4. Reduced DOS g(ω)/ω2 2 versus frequency for Gaus-
sian force-constant distributions with σ/K0 = 1 and several
lower cutoffs (in units of K0). The symbols represent the nu-
merical diagonalization, the full lines the CPA results. The
agreement is achieved without any adjustable parameters.
From [153].

localization to happen much above the boson peak, near
the upper band edge.

• A pathfinding paper on the boson-peak anomaly was
published 1992 by S. R. Elliott [63]. He argued that in an
amorphous structure there exists a length scale at which
the atomic structure is no more distinct. This length
scale is the correlation length and describes the decay of
the radial distribution function4 g(r) towards its decor-
related value 1 (s. Fig. 3). On a scale larger than ξ the
material looks homogeneous and isotropic, therefore, so
the argument of Elliott, waves with wavelength λ larger
than ξ can be supported by the material. Waves with
smaller λ become rather strongly scattered, and, with in-
creasing frequency, the vibrational excitation loses grad-
ually its wave character, as formulated by Ioffe and Regel
[87]. Converting length scales to frequency scales by the
transverse velocity vT , which is roughly equal to the De-
bye velocity vD = ωD/kD (Debye frequency ωD, divided

by the Debye wavenumber kD = 3
√

6π2N/V =
3
√
6π2/a,

where a is an intermolecular spacing) Elliott [63] conjec-
tured that the frequency at which disorder-induced de-
viations from the Debye wave physics should occur near
ωB = vT /ξ ∼ ωDa/ξ, i.e. roughly 1/10 of the Debye fre-
quency. This is precisely the frequency range of ∼ 1 THz,
around which the boson peak is observed in most materi-
als [134]. A correlation between the boson-peak position
and vT /ξ is indeed observed in many glasses [55, 63, 134].

4 g(r)− 1 is the Fourier transform of the structure factor S(k) mi-
nus 1 [62, 81] of the amorphous material, which can be measured
by elastic X-ray or neutron diffraction. 4πr2g(r)N/V (particle
number N volume V ) gives the probability density for the pres-
ence of other atoms/molecules with distance r from a given one
at the origin.

FIG. 5. Thermal conductivity calculated in self-consistent
Born approximation (SCBA) [152] for three values of the dis-
order parameter γ ∝ ⟨(∆G)2⟩, compared with the data of
Fig. 1 [70], scaled with the Debye temperature ΘD. The red
arrows correspond both to the boson peak positions of the
specific heat, calculated in SCBA as those of the experiments
(from Schirmacher [152]).

• In a model calculation on a 3-dimensional lattice
with randomly distribution of force constants Schirma-
cher et al. [153] considered a mass-spring system of the
type (4) on a simple-cubic lattice with Gaussian force-
constant disorder, truncated from below was treated both
by CPA and by numerical diagonalization. In Fig. 4 we
show their result for the reduced DOS g(ω)/ω2. First, the
agreement of the CPA with the numerical data showed
that the CPA is a reliable mean-field theory for disorder.
In both calculations a pronounced BP is visible (Fig. 4).
The inclusion of negative force constants demonstrated
that the BP is strongly enhanced by the presence of neg-
ative force constants and is a precursor of an instability,
which occurs in the presence of too many negative force
constants. The authors further evaluated the mean-free
path ℓ(ω), and found by comparison with the wavelength
λ(ω) that the BP position is near the Ioffe-Regel limit,
where ℓ(ω) ∼ λ(ω). The authors also evaluated the level-
distance statistics of the eigenvalues and demonstrated
that the vibrational states near and above the BP are de-
localized, because the statistics follows that of the Gaus-
sian Orthogonal Ensemble (GOU) of random matrices
[119, 178]. A mobility edge, above which the states are
localized, appears only very near the upper end of the
band, thus corroborating the predictions of Schirmacher
and Wagener [160]. It was proved later in numerical in-
vestigations of a similar force-constant model [142, 143]
that these states obey the Porter-Thomas statistics [144],
i.e., are of the same type as random-matrix eigenstates.
• That in a disordered harmonic system an extended

frequency region exists, in which the vibrational states
are neither propagating nor localized had already been
found by Allen et al. [7, 8, 65] in a simulation of
amorphous Si. Allen et al. [8] called the correspond-
ing excitatins “diffusons”, because the intensity of such
waves obey a diffusion equation like light in milky glass
[88]. They called the Debye waves below the Ioffe-Regel
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crossover “propagons” and the localized states near the
Debye frequency “locons”. They deliberately avoided the
term “phonons”, because phonons are by definition the
eigenstates of a crystal.

• A model calculation similar to that of Schirmacher
et al. [153] (a crystal with force-constant disorder) was
presented later by Taraskin et al. [190], but with a some-
what different interpretation. They observed - similar
to the findings in [153] that - with increasing disorder
- the lowest van-Hove singularity5 of the lattice broad-
ens, moves down in frequency, and then smoothly goes
over to the low-frequency BP. They concluded that the
BP is essentially due to the levelling off of the trans-
verse phonon branch and not so much due to disorder.
This view was corroborated later by experimentalists who
compared silicate glassses with their crystalline counter-
parts [44, 45, 218] (see below).

• Grigera et al. [77] investigated a disordered mass-
spring model (Euclidean random-matrix model, ERM)
by a diagrammatic procedure. Inspired by the behaviour
of a mean-field theory obtained from a class of diagrams,
they obtained a BP-type anomaly, which – with increas-
ing disorder – leads to an instability like the CPA of
Schirmacher et al. [153] with too many negative force
constants. This instability was interpreted as a tran-
sition from a mimima-dominated potential-energy sur-
face (PES) to a saddle-dominated PES. The ERM model
was shown to imply Rayleigh scattering, i.e. a sound at-
tenuation Γ(ω) ∝ ω4 [72, 76, 154], in agreement to the
disordered-lattice calculations [153, 190] and the HET
theory (see below).

• Schirmacher [152] formulated a heterogeneous-
elasticity theory (HET), which is a theory of elasticity,
in which the shear modulus G exhibits spatial fluctua-
tions. This theory was solved for the averaged DOS by
field-theoretical techniques for a mean-field theory (Self-
consistent Born approximation, SCBA), which predicts

- a disorder-induced boson peak independent of an
underlying lattice;

- a disorder-induced Rayleigh-like sound attenuation
Γ(ω) ∝ ω4;

- a minimum of the transverse phase velocity vT (ω)
near the BP. This theory conforms with the previous con-
clusions that the BP is a phenomenon produced by the
structural disorder of the glass. Within the same theo-
retical framework a theory for the thermal diffusivity was
formulated. Combined with the inelastic scattering from
two-level system, he found an explanation for the char-
acteristic shoulder in the temperature dependence of the
thermal conductivity: It is an upside-down boson peak
(see Fig. 5).

The anomalous increase of the DOS above the Debye
DOS was subsequently shown [155] to be related to the

5 A Van-Hove singularity occurs in the DOS of a crystal at a fre-
quency, at which the phonon dispersion ω(k) becomes constant
at the Brillouin-zone boundary.

FIG. 6. Top: C(T )/CD(T ) ∝ C(T )/T 3 against T/ΘD for
four different (glassy) alcohols, compared with glassy glycerol
(from Ramos et al. [147]).
Bottom: [C(T ) − γT ]/T 3 for three metallic glasses. γT is
the Sommerfeld contribution of the electrons (from Li et al.
[107]).

Rayleigh ω4 behavior of the sound attenuation: It was
shown that the excess DOS is just proportional to the
sound attenuation Γ(ω).

The SCBA version of HET, which only applies to
Gaussian distributions of elastic moduli and moderate
disorder was generalized by means of an off-lattice ver-
sion of the CPA, again by field-theoretical techniques
[95]. This version served recently to obtain a disorder
classification of glasses [134].

• An important aspect in the discussion about the bo-
son peak has been contributed by the theoretial investiga-
tion of the jamming transition [51, 52, 69, 108, 130, 207–
210]. The disordered solid is considered as a random
packing of soft spheres with a finite range of interactions.
The latter induce a number of constraints, which lead to a
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finite shear elasticity. The instability of the solid – where
the shear stiffness becomes zero – is reached at the iso-
static point, where the number of constraints equal the
number of degrees of freedom [117]. It was shown by sim-
ulations and effective-medium calculations that in such
random packings near the jamming instability a boson
peak appears in the vibrational spectrum. This was ra-
tionalized by a rather simple mean-field jamming model,
the so-called perceptron [68, 69], which was introduced in
connection with neural networks. The generic frequency
dependence in the mean-field limit (dimension d → ∞)
is given by a modification of the the Marchenko-Pastur
law of rectangular random matrices [112]

g(ω) ∝ ω

√
(ω2 − ω2

0)(ω
2
max − ω2)

ω2 + ω2
∗

. (5)

In finite dimensions the gap below ω0 is filled with Debye-
type waves, so that one has in general [51, 69]

g(ω) ∝

 ωd−1 ω ≪ ω0

ω2/ω2
0 ω0 ≪ ω ≪ ω∗

const. ω∗ ≪ ω ≪ ωmax .
(6)

The resulting boson peak at ω0 marks – as in the
heterogeneous-elasticity theory – the crossover between
the Debye wave regime and the random-matrix regime.
The eigenvectors of random matrices [119] are known to
be delocalized.

III. EXPERIMENTAL INVESTIGATIONS

1. Specific heat and thermal conductivity

The specific-heat BP, i.e. a maximum in the temper-
ature variation of C(T )/T 3, see the top panel of Fig. 1,
is observed in practically all glassy materials. As further
examples we display boson peaks of a number of alcohols
[147] and metallic glasses [107]. In the latter the Som-
merfeld contribution due to the free electrons γT , with
γ = 1

3π
2k2BN(EF ) (N(EF ) is the electronic DOS at the

Fermi level), must be subtracted, in order to obtain the
vibrational contribution. It is interesting to note that in
many cases the BP temperature Tmax is proportional to
the Debye temperature ΘD.

We mentioned in the introduction (bottom panel of
Fig. 1), that in the temperature variation of the ther-
mal conductivity a characteristic shoulder (plateau) is
observed near Tmax. Similar features are observed in
other complex solids like oriental glasses [212], and other
disordered crystalline materials [3, 16, 47, 180, 187, 188].
In all cases the temperature in the middle of the plateau
of the thermal conductivity coincides with Tmax of the
boson peak [96], as displayed in Fig. 7, where thermal-
conductivity data are displayed with a temperature scale
normalized with Tmax.
As mentioned also in the introduction, there is a corre-

spondence between of the vibrational part of the specific

FIG. 7. Temperature depencence of the thermal conductiv-
ity of several materials plotted vs. T/Tmax, where Tmax is the
maximum of the reduced specific heat C(T )/T 3: SiO2 [37, 49],
PMMA and PS [177], glassy C2D2OD [97], oriental glass
(KBr)0.75(CN)0.25 [212], disordered ferro-electric perovskite
crystals [187, 188], clathrate semiconductors [16, 47, 180] and
disordered Y2O3ZrO2 [3]. The dashed line indicated the (bo-
son) peak of C(T )/T 3 (from Krivchikov and Jezowski [96]).

heat and the vibrational DOS g(ω). This relationship is
given by [15]

C(T ) =
ℏ2ω2

kBT 2

∫ ∞

0

dωg(ω)
eℏω/kBT[

eℏω/kBT − 1
]2 . (7)

Buchenau et al. [35] showed for the example of glassy
SiO2, by comparing with inelastic neutron-scattering
data, that the DOS obtaining from the neutrons repro-
duces the temperature variation of the specific heat using
(7).
Inverting Eq. (7) for g(ω) is a mathematically ill-posed

problem, but, using methods explained in Tikhonov and
Arsenin [192] (Tikhonov regularization) it can be still
achieved, for obtaining the DOS, as shown by Surovtsev
[181]. This has been widely used in the meantime [11,
134].

2. Spectroscopic Methods

A. Early investigations

Other than by the temperature dependence of the spe-
cific heat, information about the vibrational DOS of a
solid can be obtained by several spectroscopic methods:
Raman spectroscopy [29, 90], neutron [164], X-ray [169],
and nuclear [43] inelastic scattering as well as Terahertz
spectroscopy [131, 163, 189]. In the early times vibra-
tional spectroscopy in glasses was focussed on comparing



7

a)

500 1000 1500

b)

c)

FIG. 8. a) HH and VH Raman intensity of vitreous silica,
b) vibrational density of states g(ω) of vitreous silica, and
c) g(ω) of polycrystalline silica, both obtained by inelastic
neutron scattering, from Galeener et al. [71].

the obtained spectra with those of their crystalline coun-
terparts. In Fig. 8 we show an investigation the paradig-
mal glass silica (SiO2). The Raman and neutron spec-
trum of glassy silica is compared with the spectrum of
polycrystalline quartz. It is observed that in the regime
above ∼ 300 cm−1 ∼ 10 THz the spectra exhibit essen-
tially the same features, which correspond to the typical
vibrational excitations of a covalent network [71].

B. Inelastic Neutron and Raman scattering

For incoherent neutron scattering the scattering inten-
sity is given by the incoherent one-phonon neutron scat-
tering law [164]

Sincoh(k, ω) ∝ k2
[
n(ω, T ) + 1

]g(ω)
ω

. (8)

Here ℏk is the momentum transfer and ℏω the energy
transfer experienced by the neutrons during the scatter-
ing process.

FIG. 9. Density of states of glasses as evaluated by inelas-
tic neutron scattering. Top: Glycerol (from Wuttke et al.
[206]), Bottom: SiO2 (from Wischnewski et al. [203]). It can
be seen that in both cases in the low-temperature region (be-
low ∼ 170 K) the boson-peak spectrum is temperature inde-
pendent. The arrows (top panel) and straight lines (bottom
panel) correspond to the Debye g(ω) ∝ ω2 prediction [15].

The thermal prefactor n(ω, T ) is due to the condition
of detailed balance S(k,−ω) = S(k, ω)e−ℏω/kBT . In prin-
ciple, (8) applies only to incoherent neutron scattering,
which would limit the investigations mainly to hydrogen-
containing materials like glycerol [206] or water [111].
However, it was demonstrated, that Eq. (8) may also be
used for coherent scatterers, which comprise most nuclei
in the investigated materials. It turned out, that ex-
pression (8) may be used for coherent spectra, averaged
over all experimentally available momenta ℏk (“incoher-
ent approximation” [40, 64, 133, 164]).

Let us have a look at the DOS of glassy glycerol and
silica, obtained [203, 206] by inelastic neutron scatter-
ing, shown in Fig. 9. The DOS is plotted as g(ω)/ω2,
which should be frequency independent if Debye’s law
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FIG. 10. Reduced DOS of collective motions in toluene, ethyl-
benzene dibutylphthalate, and glycerol glasses. Arrows indi-
cate the energy of the boson peak estimated from the data at
lowest temperature (from Chumakov et al. [42]).

would apply. We see that the strong enhancement with
respect to the Debye expectation (boson peak) is tem-
perature independent in the low-temperature regime 50
to 150 K. This is again an indication that in this low-
temperature regime the boson peak is likely to be of har-
monic origin. The temperature dependence at higher T
(or smaller frequency) due to the anharmonic interaction
may come about – like in crystalline solids [74, 85, 123]
– in two different ways: (i) indirectly via a change of
the elastic constants, (viz. the sound velocities) with T
(quasi-harmonic effect), or (ii) via a direct change of the
excitation spectrum.

Among the many subsequently reported neutron-
scattering results on the vibrational spectrum of glasses
[13, 33–35, 86, 148, 196, 205, 214, 217] many investiga-
tions focussed on the extraction of the Raman-coupling
function C(ω) by comparing the neutron spectra with the
Raman spectra [2, 27, 56–58, 82, 89, 99, 151, 176, 181–
186, 216]. All of these showed that C(ω) ∝ ω in the
BP frequency regime is linearly proportional to the fre-
quency ω. This was used subsequently to study the DOS
by Raman spectroscopy [38, 48, 54, 83, 84, 92, 127, 138,
149, 166].

In 2008 Schmid and Schirmacher [161] published a the-
ory of Raman scattering, which makes it possible to de-
scribe Raman spectra and other spectra containing infor-
mation on the DOS in a unified way. This was used sub-
sequently, in combination with heterogeneous-elasticity
theory [152, 155–157] to describe and reconcile Raman,
neutron-scattering and specific-heat data in a unified way
[28, 134, 167, 194].

FIG. 11. Comparison of the density of states (a), (d) and the
reduced density of states (b),(e) obtained with the nuclear
inelastic scattering technique, and of the specific heat (c),(f)
for ambient silica glass and α-quartz (a)–(c), and for densified
silica glass and α-cristobalite (d)–(f) (from Chumakov et al.
[45]).

C. Nuclear inelastic scattering

A powerful method for measuring the vibrational DOS
is nuclear inelastic scattering (NIA) [168, 179]. It had al-
ready been pointed out as early as 1960 by Singwi and
Sjölander [175] that the resonance fluorescence spectrum
of Mössbauer impurities essentially gives the same infor-
mation as the incoherent neutron scattering law. But
in conventional Mössbauer experiments or by applying
conventional X-Ray sources the frequency range was not
extended enough to observe phonon spectra. This sit-
uation changed with the advent of high-brilliance syn-
chrotrotron sources, and it was shown [168, 179] that the
NIA method can successfully be used to extract phonon
spectra of solids. A severe drawback of this method
is that there are only a few Mössbauer isotopes avail-
able with resonance energies accessible by synchrotron
radiation, namely 57Fe (E0 = 14.4 keV), 119Sn (E0 =
23.9 keV), 151Eu (E0 = 21.6 keV). Chumakov et al. [42]
imbedded ferrocene molecules with 57Fe as central atom
into several glassy hosts in order to successfully extract
the vibrational DOS of the hosts. The authors made sure
that the ferrocene molecules were tightly bound into the
hosts, so that the spectra are not due to an extra mo-
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tion of the impurity, but represent the host spectra. In
Fig. 10 the results for the vibrational DOS of four glass-
forming materials are shown [42]. The authors found
that all spectra (and further spectra from the literature)
exhibited an exponential decrease of the DOS beyond
the boson peak. It has been shown recently [193], by
applying instanton techniques [39], that this exponential
decrease is a disorder-induced phenomenon like the band
tails observed in the electron spectra of disordered mate-
rials [46].

Later the NIA method was used to compare the spec-
tra of glassy silicates with the DOS, obtained from
the phonon dispersions of the corresponding crystals
[44, 45, 218]. Following the conclusions of the model cal-
culations of Taraskin et al. [190] the authors substanti-
ated the point of view that the boson peak is a broadened
version of the lowest (transverse-acoustic) van-Hove sin-
gularity of the corresponding crystal. They explained the
fact that in crystals in the low-frequency regime of ∼ 1
THz no such singulary occurs by pointing out that glasses
usually have a lower density than the corresponding crys-
tals. In the case of SiO2 they compared the DOS of the
ambient SiO2 glass with that of crystalline α quartz and
that of densified SiO2 glas with that of cristobalite, which
has a higher density. In both cases the glassy boson peak
is observed near the corresponding van-Hove singularity.
The boson peaks in the specific heat of these materials
corroborate these findings (see Fig. 11). The authors
state the opinion that quite generally in all glassy mate-
rials the boson peak would be due to the leveling-off of
the transverse acoustic sound dispersion near the quasi-
Brillouin zone (quasi-van-Hove singularity), i.e. the BP
would in general not be caused by the structural disorder.
We will comment on this in the discussion section.

3. Inelastic X-Ray scattering

A breakthrough in the vibrational spectroscopy of
glasses was the development of inelastic-X-ray spectrom-
eters at synchrotron sources with extremely narrow res-
olution [169, 170]. Due to the very high brilliance of the
synchrotron radiation it was possible to devise monochro-
mators and analyzers (using very-high-order reflections)
with resolution of ∼ 1 meV, comparable to that of ther-
mal neutron scattering. In contrast to the latter for the
X-rays there is no upper kinematic limit in energy. For
the neutron investigations it was not possible to investi-
gate acoustical waves above the∼ 1 Thz or 4 meV regime.
Similar to neutrons, the X-rays are sensitive to the lon-
gitudinal degrees of freedom.
Instead of averaging over the momenta, as done in the

incoherent approximation, the observation of the k de-
pendence of the spectra can provide useful information
on the nature of the vibrational wavefunctions, which
underly the observations. The spectra are given by the
coherent scattering law

Scoh(k, ω) ∝
[
n(ω) + 1

]
χ′′(k, ω) (9)

FIG. 12. Momentum (Q) dependence of the DHO resonance
frequency parameter Ω(Q) and Γ(Q), Eqs. (9) and (10), for
glassy glycerol, from Sette et al. [169].

where χ(k, ω) = χ′(k, ω) + iχ′′(k, ω) is the complex dy-
namical susceptibility, which is usally parametrized as a
damped harmonic oscillator (DHO) with resonance fre-
quency Ω(k) and sound attenuation (damping) coefficient
Γ(k)

χ(k, z) =
k2

−ω2 +Ω(k)2 − iωΓ(k)
(10)

Inelastic scattering experiments featuring a resonance
Ω(k) are usually referred to as Brillouing spectra and
Γ(k) is then the Brillouin line width (full width at half
maximum, FWHM for Γ ≪ Ω).
Indeed the first inelastic X-ray scattering (IXS) exper-

iments on glassy glycerol [115, 169], LiCl:6H2O [115] and
SiO2 [26] revealed a pronounced propagating longitudinal
sound excitation, i.e. Ω(k) ∝ k which extends into the
k ∼ 5 nm−1 range, which corresponds to a wavelength
of ∼ 1 nm. Interestingly, in all cases the propagating
wave-like excitations extended beyond the boson-peak
energy EBP = ℏωBP , as indicated in the top panel of
Fig. 12 for the case of glycerol [169]. Similar features
were found in glassy SiO2 [26]. Some authors were as-
tonished that above the boson peak and the Ioffe-Regel
frequency propagating modes would exist [67, 195], but
later experiments confirmed the presence of these modes,
which proved to be of longitudinal character.
In subsequent times the resolution of the X-ray beam-

lines was increased and further details about the vibra-
tional excitations of glasses were revealed. Here, we fo-
cus on the example of glassy SiO2. In the top panel
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FIG. 13. Upper panel: Dispersions of maxima of the dy-
namical structure factors obtained by inelastic X-ray and
neutron scattering experiments ([23] and citations quoted
therein). Lower panel, top: Frequency-dependent sound ve-
locity vL(ν) = ΩL(q)/q vs. ν = Ω(q)/2π, middle: Brillouin
line width (sound attenuation) Γ(ν), bottom: reduced DOS
g(ν)/ν2 obtained by neutron scattering, using the incoherent
approximation (from Baldi et al. [22]).

of Fig. 13 the dispersion Ω(q) is shown together with
the maxima of inelastic neutron scattering (INS) data
obtained by the same authors. The latter show the
boson peak near ℏω = 6 meV as a wavenumber inde-
pendent feature. Two years later Baldi et al. [21, 22]
found a crossover in the sound attenuation (Brillouin line
width) from a Rayleigh-like behaviour Γ(ω) ∝ ω4 to ω2,
as predicted by heterogeneous-elasticity theory (HET)
[113, 152, 155–157] near the boson-peak frequency 1.5
THZ =̂ 6 meV. This crossover is accompanied by a kink
in the frequency-dependent longitudinal sound velocity
v(ω), where v(ω) = Ω(q)/q

∣∣
ω=Ω(q)

, predicted as well by

HET theory. Similar findings were obtained as well for
glassy glycerol [124] and sorbitol [150]. In the latter ma-
terials, as remarked by Baldi et al. [21] the connection
between Γ(ω) and v(ω), as given by HET theory is suffi-
cient to explain the boson peak in the INS data, whereas

FIG. 14. Top: Non-affine displacements in a computer SiO2

glass subject to a global shear; bottom: reduced DOS g(ν)/ν2

scaled with the transverse sound velocity and the correlation
length ξ for the SiO2 glass and a Lennard-Jones-glass [103]
(from Léonforte et al. [104]).

in glassy SiO2 it is not. The missing boson-peak intensity
could then be additionally due to optic-like or van-Hove-
singularity like modes [19, 20, 24, 41, 44, 45].

IV. SIMULATIONS

Since the first molecular-dynamics (MD) simulation of
a Lennard-Jones glass6 of Rahman et al. [145], in which
the DOS was calculated and was shown to agree to the
Fourier transform of the velocity autocorrelation function
[81, 157], a very large number of MD simulations has been
published, and, again, we can only mention a few, which
– to our opinion – contributed most to the understanding
the low-frequency anomalies of glasses.
In the 1970-80 years only limited computer power and

storage capacity was available, so the simulated systems
could have only particle numbers of N = 500 to 2000.
In simulations of such small systems Laird and Schober

6 A Lennard-Jones glass is a liquid, in which particles interact via
a Lennard-Jones potential ϕ(r) ∝ Ar−12 −Br−6, quenched to a
very low temperature.
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[98, 165] found low-frequency modes, which, by analyzing
the participation ratio appeared to be localized.

The participation ratio p is defined by [50]

p =
[
N

∑
i

(ei · ei)2
]−1

(11)

of the eigenvectors ei of the dynamical matrix (1) nor-
malized as

∑
i(ei · ei) = 1. p takes values of the order

unity for extended states and small values of order 1/N
for localized ones. In macroscopic large disordered mate-
rials, as stated above, the low-frequency vibrational ex-
citations are acoustical waves, because the material on
a large scale is homogeneous and isotropic. In the sys-
tems of only ∼ 1000 particles, the low-frequency acous-
tic waves do not exist, because their wavelengths would
be much larger than the sample size. Therefore Laird
and Schober [98] argued that the localized excitations,
which they observed at small frequencies, would – in a
larger system – hybridize with the acoustical waves (like
heavy-mass impurities in crystals [60]), and called these
excitations “quasi-localized”. Quite recently a revival of
the investigation of such small systems took place in the
literature [12, 18, 105, 106, 122, 135, 137, 201]. It was
found that the DOS of the quasi-localized modes of small
systems follows a scaling g(ω) ∝ ωα, where in many in-
vestigated systems α ≈ 4 [105]. In other systems the
observed exponent α ranged between 2 and 4, dependent
on the preparation protocol [12, 135, 137].

In the 2000er years the advancement of machine power
and storage, in particular the advent of parallel comput-
ing [139] made it possible to treat systems with 105 to 107

particles, enabling to disentangle the boson peak from
the finite-size resonances of the acoustic waves. One of
the first of such studies treated a Lennard-Jones system
[103] and glassy SiO2 [104]. It was shown, confirming
other similar findings [102, 204] that the overwhelming
part of the vibrational displacements in a glass do not
follow an external strain in an affine way. Instead, these
displacements display non-affine patterns, as shown in
Fig. 14. Léonforte et al. [104] found that the correla-
tion length ξ of these patterns is as large as ∼ 10 in-
teratomic spacings both in the Lennard-Jones and SiO2

glass. In a representation against ωξ/vT – in accord with
the empirical law of Elliott [63] and Duval et al. [55] –
the observed boson peaks co-incide, as displayed in Fig.
14. Further studies of model glasses focussed on evalu-
ating the local spatial fluctuations of elastic constants.
As shown in the two seminal papers of Lutsko [109, 110]
local elastic constants – including the non-affine contri-
butions – can be evaluated by a coarse-graining proce-
dure. Such a procedure was applied in a number of pa-
pers [53, 113, 120, 121].These studies confirmed the pres-
ence of spatial fluctuations of elastic constants in glasses,
which is the basic assumption of heterogeneous-elasticity
theory, HET [152, 156, 157]. In fact, using the exam-
ple of a simulated soft-sphere glass, i.e. a quenched sys-
tem of N = 107 particles with interparticle potential
varying as ϕ(r) ∝ r−12 Marruzzo et al. [113] showed

FIG. 15. Comparison of the results of a soft-sphere glass
simulation (symbols) for three different temperatures T =
5 · 10−5, T = 5 · 10−4, T = 5 · 10−3 (in Lennard-Jones units),
with the prediction of heterogeneous-elasticity theory (HET)
[152, 155] (blue lines). Top panel: reduced DOS g(ω)/ω2.
Bottom panels: Real and imaginary part of the complex shear
modulus, obtained from both, the complex transverse and
longitudinal sound velocities, see text (from Marruzzo et al.
[113]).

that the observed boson peak is due to the spatially
fluctuating elastic constants and can be perfectly de-
scribed by HET using exactly the observed statistics.
The data were evaluated for the DOS g(ω) from the ve-
locity autocorrelation function and the longitudinal (L)
and transverse (T ) current correlation functions [81, 157]
CL,T (k, ω) = (ω/k2)Im

{
χL,T (k, ω)

}
with the longitudi-

nal and transverse dynamic susceptibility given by the
DHO formula (10). The quantities ΩL,T (k) and ΓL,T

were converted to complex frequency-dependent elastic
constants G(ω) (shear modulus) and M(ω) = K+ 4

3G(ω)
(longitudinal modulus) as

G(ω) =
ρm
k2

[
ΩT (k)

2 − iωΓT (k)
]
ω=ΩL(k)

M(ω) =
ρm
k2

[
ΩL(k)

2 − iωΓL(k)
]
ω=ΩL(k)

= K +
4

3
G(ω) . (12)
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Here ρm is the mass density. The transverse and longitu-
dinal data sets could be reconciled by taking the bulk
moduls K frequency-independent and real, as demon-
strated in the bottom panel of Fig. 15, i.e. it was found
that ΓL(ω) =

4
3ΓT (ω) and, indeed, M

′(ω) = K+ 4
3G

′(ω).
Furthermore, the prediction of heterogeneous-elasticity
theory, HET [113, 152, 155] (blue lines) lie on top of the
simulated frequency dependent spectral quantities. This
holds for three very different temperatures. It is remark-
able that the spatial distribution of the fluctuating lo-
cal shear moduli, extracted from the simulation, agrees
with the distribution used in the theory. The tempera-
ture dependence at very low frequencies could be traced
to anharmonic effects [114]. The downward kink of the
real parts of the elastic coefficients at the BP frequency,
which correspond to the downward kink of the k depen-
dent sound velocity [21, 124], which is predicted by HET,
arises as a consequence of the Kramers-Kronig relation
between the real and imaginary parts of the complex
moduli. Similar features had also been observed in an
earlier simulation of a Lennard-Jones glass [125].

V. DISCUSSION

Let us try to summarize, what has been found in the
last half century about the origin of the boson-peak re-
lated vibrational anomalies of glasses. Beside that – on
the theoretical side – the subject is highly controver-

sal, we find that – on the experimental (and computer-
experimental) side – the evidence is that the boson peak
is not universal, i.e. in different materials the spectral
features leading to an enhanced reduced DOS in the THz
regime are caused by different physical mechanisms. For
the prototypical glass SiO2 there is clear evidence for the
presence of local oscillators in the THz regime, which are
most probably librations7 of SiO2 tetrahedra [33], giving
rise to optical modes and van-Hove peaks in the corre-
sponding crystal [45]. On the other hand, in non-network
glasses like metallic glasses or the computer models, it
has become clear that the structural disorder is responsi-
ble for the boson peak. In such materials the BP marks
the transition from sound-like vibrational excitations to
random-matrix like excitations. It has been demon-
strated by investigating the vibrational spectrum of a
macroscopic model glass that both features, the disorder-
induced boson peak and a smeared van-Hove singularity
coexist at different frequencies [202]. In fact, as remarked
by Baldi et al. [21] both mechanisms might be present in
glassy SiO2. For a simulated metallic glass Brink et al.
[30] recently demonstrated that the BP clearly comes
from the disorder and not from a smeared van-Hove sin-
gularity. Particularly difficult in this respect is the inter-
pretation of specific heat data. As stated above, a BP
in the specific heat is observed not only in glasses but
in in an extended number of (complex) crystalline mate-
rials [96]. In the latter, they are most probably due to
low-frequency “rattlers”, i.e. loosely bound heavy-mass
molecules or residues
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