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Abstract
We investigate the low-frequency enhancement of vibrational excitations (‘boson peak’) in
niobium-phosphate glasses through the combination of inelastic neutron and
polarization-resolved Raman scattering. The spectra of these glasses reveal an enhancement of
the vibrational density of states and of the cross section for spontaneous Raman scattering in the
frequency range below 150 cm−1. A recent theoretical model that is based on fluctuating elastic
and elasto-optic (Pockels) constants provides a unified description of the measured neutron and
Raman spectra, including the depolarization ratio.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Inelastic neutron and low-frequency light scattering are
efficient probes of low-frequency excitations in glasses [1–3].
While neutron scattering is coupled to density fluctuations
the coupling of light involves fluctuations of the dielectric
susceptibility. The structural disorder in glasses manifests
itself in fluctuations of the elastic properties and the coupling
to the respective probe. A spectral enhancement (‘boson peak’)
in the 1 THz (or 100 cm−1) regime is universally observed in
the density of vibrational states (DOS) as revealed by neutron
scattering. On the other hand, the light-vibration coupling
plays another important role, as it controls the absolute value
of the effect as seen by light scattering.

Glasses with broad and intense Raman-active modes have
attracted attention for applications in all-optical amplification

systems as the Raman-gain coefficient depends significantly
on the cross section for spontaneous Raman scattering [4].
Therefore it is advantageous to have a material with a smooth
and not too small Raman spectrum down to the low-frequency
regime.

Concerning the boson peak, an extended literature exists,
in which the nature of the vibrational state in this frequency
regime has been investigated by experiment and simulation,
as well as by theoretical modelling [5–14]. However the
light-vibrational coupling was hitherto discussed in terms of
a phenomenological frequency-dependent function C(ν), and
it was assumed that this function entered the prefactor of the
Shuker–Gammon formula [1, 15]

I (ν) = [n(ν) + 1]C(ν)
g(ν)

ν
, (1)
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where n(ν) = 1/[ehν/kB T − 1] is the boson occupation number
and g(ν) is the vibrational density of states. As this function
was unknown, many studies have tried to determine it by
comparing Raman data with DOS data extracted from specific
heat or neutron scattering measurements [16, 17]. Only very
recently have two of the present authors developed a theoretical
model, in which the light-vibration coupling is modelled by
spatially fluctuating Pockels constants, thereby allowing for
the violation of the local momentum and angular-momentum
selection rules [18]. The vibrational spectrum of the disordered
solid was modelled by generalizing elasticity theory to allow
for spatial fluctuations of the shear modulus [12–14]. A theory
for light scattering needs model assumptions for the coupling
of the local polarizabilities to the local strains (elasto-optical
coupling, Pockels coupling). Including spatially fluctuating
Pockels constants allowed closed expressions to be obtained
for the Raman spectrum and thereby the treatment of neutron,
Raman, and inelastic x-ray scattering on the same footing. The
theory accounts for the differences in the ‘boson peak’ as seen
by Raman scattering compared to neutron scattering.

In this contribution we present a combined experimental
and theoretical investigation of low-frequency vibrational
excitations in 20Nb2O5–80NaPO3 and 40Nb2O5–60NaPO3

glasses. These materials show a broad and intense Raman
spectrum, and they are therefore good candidates for all-optical
Raman-gain applications [19]. We employ inelastic neutron
scattering as well as polarization-resolved low-frequency
Raman scattering in order to explore the role of fluctuations in
both the elastic medium and the coupling to light. By applying
the theory of [18] we show that the neutron and Raman spectra
can be reconciled. The analysis yields information on the light-
vibration coupling and the state of disorder of the material.
In particular, the depolarization ratio is directly related to
fluctuations in the elasto-optic (Pockels) constants.

2. Theoretical background

We briefly review our theoretical framework. We model the
disordered solid as an elastic continuum, allowing for spatial
fluctuations of the shear modulus G. The statistical properties
of the fluctuations �G(r) = G(r) − 〈G〉 are represented by
the correlation function

CG(r) = 〈�G(r + r0)�G(r0)〉 ≡ 〈�G2〉e− 1
4 r2/ξ 2

G . (2)

This can be shown [12–14, 18] to lead to frequency-dependent
complex sound velocities

v2
L,T(ω) = v2

L,T,0 − �L,T(ω), (3)

where ω = 2πν, and �T(ω) = 1
2�L(ω) ≡ �(ω) is the so-

called self-energy. The latter obeys the self-consistent equation
(self-consistent Born approximation, SCBA)

�(ω) = γ

∫
|k|<kD

d3k
(2π)3

C̃G(k)[χL(k, ω) + χT(k, ω)] (4)

where we have put CG(k) = fGC̃G(k) with
1

8π3

∫
|k|<kD

d3kC̃G(k) = 1 and γ ∝ fG ∝ 〈�G2〉. The lon-
gitudinal and transverse strain susceptibilities χL,T are

χL,T(k, ω) = k2GL,T(k, ω) = k2

−ω2 + k2[v2
L,T(ω)] . (5)

The DOS is given by

g(ω) = 2ω

3π

∫
|k|<kD

d3k
(2π)3

Im{GL(k, ω) + 2GT(k, ω)}. (6)

For the description of the light-vibration coupling the
dielectric tensor is expanded with respect to the strain
tensor ui j = (1/2)[∂i u j + ∂ j ui ] as �εi j(r, t) = a1(r)∑

� u��(r, t)δi j + a2(r)vi j(r, t), with vi j = ui j − (1/3)δi j∑
� u�� [20]. These quantities are now assumed [21] to have

disorder-induced fluctuations a1,2(r) = a(0)
1,2 + �a1,2(r) with

correlation functions C1,2(r) = 〈�a1,2(r0 + r)�a1,2(r0)〉. The
constant terms a(0)

1,2 produce the usual formulae for Brillouin
scattering and Raman scattering. From the fluctuating terms
one obtains

IVH(ω) = [n(ω) + 1] α

15

(
χ2,L(ω) + 3

2
χ2,T(ω)

)

IVV(ω) = 4
3 IVH(ω) + α[n(ω) + 1]χ1,L(ω)

(7)

with the partial Raman susceptibilities (i = 1, 2)

χi,L,T(ω) = Im

{∫ (
dk
2π

)3

Ci(k)χL,T(k, ω)

}
(8)

where α is a proportionality constant which involves the
incident intensity, divided by the fourth power of the
wavelength of the scattered light [18]. This leads to a
depolarization ratio of the form

ρ(ω) = IVH(ω)

IVV(ω)
=

[
4

3
+ 15

χ1,L(ω)

χ2,L(ω) + 3
2χ2,T(ω)

]−1

. (9)

We assume that the Pockels correlation functions are of
Gaussian form (equation (2)) and introduce correlation lengths
ξi and prefactors fi (i = 1, 2) as Ci(k) = fi C̃G(k).

Equations (4) and (5) form a set of self-consistent
equations, which have to be solved numerically for the
complex, frequency-dependent self-energy �(ω), using a
suitable iteration procedure (usually 5–10 iterations are
sufficient). For mathematical reasons a small positive
imaginary part must be added to the frequency. The input into
these equations are the unrenormalized sound velocities vi,0,
the Debye wavenumber kD, the ‘disorder parameter’ γ (which
must be smaller than its critical value γc) and the correlation
length ξG of the fluctuations of the shear modulus. The direct
numerical evaluation of the integrals (4) and (8) is numerically
awkward, because of the singular denominator. Instead one has
to use an integration-by-parts procedure, which is described in
the appendix.

The dimensionless quantity �̃(ω) ≡ �(ω)/vT,0 can be
shown [14] to only depend on the dimensionless parameters
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vL,0/vT,0, γ and ξkD. Furthermore for ξkD � 1 the
function �̃(ω̃) with the scaled frequency ω̃ ≡ ω/ξ/vT,0

becomes a universal function independent on ξkD. This scaling
property of the self-energy, which is proportional to the sound
attenuation coefficient divided by the frequency [13], has been
verified in a computer simulation [14].

Once the self-energy function �(ω) has been obtained it
can be inserted into expression (6) for the DOS and into (7)–(9)
for the Raman intensities and the depolarization ratio6. Here
three additional model parameters enter: f2/ f1, the ratio of the
transverse and longitudinal Pockels constant fluctuations, and
the two correlation lengths ξ1 and ξ2. As discussed below, the
Pockels ratio can be fixed, because the average value of the
depolarization ratio is a monotonic function of this ratio. The
correlation lengths are set equal to that of the elastic constant
fluctuations within the present analysis (although in principle
they may take a different value).

The main prediction of the present theory for the dynamic
susceptibility and the DOS is a cross-over of the self-energy
function from a low-frequency regime, where it is essentially
constant with a small imaginary part, to a high-frequency
regime, where this function is strongly frequency-dependent.
The low-frequency regime corresponds to a regime of Debye-
like wave propagation. In this regime the imaginary part
of the self-energy has a frequency dependence according to
�′′(ω) ∝ ω3, which leads to an ω4 law for the sound
attenuation (Rayleigh scattering). It has been proved recently
that this is a generic feature for quenched–disordered harmonic
systems [22].

In the high-frequency regime the DOS deviates from the
Debye ω2 law, which leads to the boson peak in the reduced
DOS. The boson peak just marks the cross-over from the
wave-like regime to the anomalous regime. This regime can
be called ‘random-matrix regime’, because the eigenvalues
of the dynamical matrix obey random-matrix statistics in this
regime [9]. The energy currents do not propagate in a wave-
like fashion but diffusively in this regime [23].

It has been shown in the literature [12–14] that the
model of fluctuating elastic constants, which implies all
these features, compares well with the experimental data.
In particular it has been demonstrated that with increasing
disorder γ and/or increasing correlation length ξG the boson
peak shifts downwards with frequency and increases in
intensity.

Concerning Raman scattering the present theory accounts
for the different position and shape of the anomalous peaks
in the Raman and in the neutron intensity [18]. This will be
discussed in detail in the next section.

3. Experimental results

The 20Nb2O5–80NaPO3 and 40Nb2O5–60NaPO3 glasses were
elaborated from NaPO3 and Nb2O5 raw material using

6 Although the theoretical calculations for the DOS and the Raman
intensities—as described in the text—are straightforward, they are too
complicated to be implemented as ‘push-button’ least-mean-squares fit
routines. Our model comparisons have been obtained by adjusting the
parameters ‘by hand’.

Figure 1. Low-frequency vibrational density of states of
20Nb2O5–80NaPO3 glass determined from thermal neutron
scattering (top panel). The bottom panel shows the reduced density
of states g(E)/E 2.

standard melting methods at 1100 ◦C in a platinum crucible, as
previously described [24]. Inelastic neutron scattering spectra
of the niobium-phosphate glass samples were measured at
room temperature (295 K) with the time-of-flight spectrometer
(TOFTOF) of the FRM II in Munich. The incident wavelength
was 4.7 Å at an energy resolution of 0.1 meV. The niobium-
phosphate glasses in powder form were filled in Nb double
cylinders with 0.1 mm wall thickness. A vanadium standard
in the same geometry was used to correct for detector
efficiencies. The constituents of our material are all coherent
scatterers of similar cross section. By averaging over the
full accessible scattering angle (wavevector) range we obtain
a g(ν) which gives an approximate spectral distribution of
the vibrational modes [25] (effective DOS7). The time-of-
flight data underwent the usual correction procedure, such
as correction for the detector efficiencies, normalization to a
vanadium scan, and subtraction of the empty cell contribution.

The DOS was obtained by an iterative procedure after
correcting for the Debye–Waller factor and multiphonon
contributions using the program IDA [26]. The resultant
density of states curves g(E) and g(E)/E2 at 295 K are shown
in figure 1. The Boson peak appears near 5 meV (40 cm−1) as
an enhancement of the reduced density of states over the Debye
expectation.

For the spontaneous Raman measurements an Argon ion
laser (λ = 514.5 nm) operating in single mode was employed
as the excitation source. The Raman signal was collected in a
backscattering geometry and spectrally analysed at a resolution
of 1 cm−1 with a scanning double monochromator (U1000, JY
Horiba), which was equipped with a photomultiplier detector
and a single photon counting system. A linear polarizer

7 In our theoretical analysis we took the effective DOS for the real one,
although we are aware of possible deficiencies of the procedure used to extract
the DOS from the coherent neutron data [27].
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Figure 2. Intensity of Raman scattering (anti-Stokes and Stokes
sides) in 20Nb2O5–80NaPO3 glass in three different representations:
Raman intensity (top), Raman susceptibility (middle), and reduced
Raman intensity (bottom).

Table 1. Model parameters.

Parameter 20Nb2O5–80NaPO3 40Nb2O5–60NaPO3

kDvT,0/2πc (cm−1) 141 200
γ 0.7γc 0.8γc

ξG = ξ1 = ξ2 1/(1.2kD) 1/(4kD)
vL/vT 1.8 1.8
f1/ f2 0.8 1.4

was mounted in front of the entrance slit of the spectrometer
and kept in a fixed position for transmission of vertically
polarized light. A polarizer and half-wave plate combination
on the excitation side was used to select the polarization
direction (vertical, V, or horizontal, H) of the incident light.
The laser power was measured at the sample position for
each polarization direction, and the acquired spectra were
normalized to equal excitation intensity. Typical powers were
80 mW. As the data were recorded within 250 cm−1 of the laser
light line (corresponding to 7 nm at 520 nm) no correction for
grating efficiency and detector sensitivity was performed.

In figure 2 we show the Raman spectra on the Stokes
and anti-Stokes side for VH as well as for VV scattering
geometries. The middle and the bottom panels show the
spectra, divided by the Bose factor and, to obtain the ‘reduced
intensity’, further divided by the frequency ν. The Raman
susceptibilities, presented in the middle panel, correspond
to the predicted Raman gain [4]. The slight asymmetry at
higher frequencies between Stokes and anti-Stokes sides of the

Figure 3. (a) Depolarization ratio IVH(ν)/IVV(ν). (b) Reduced
Raman intensities (upper: VV, lower: VH), compared with theory.
(c) Reduced DOS g(E)/E 2, compared with theory, using the same
parameters for the elastic model. These parameters are given in
table 1.

susceptibility and reduced intensity curves may be attributed to
a small wavelength dependence of the spectrometer/detector.
Nevertheless, for the depolarization ratio this dependence
cancels (see figures 3 and 4). In a similar way we obtained VV
and VH spectra for a material of the composition 40Nb2O5–
60NaPO3.

4. Model calculations and discussion

In figure 3 the Raman data for 20Nb2O5–80NaPO3 are
compared with the reduced DOS g(ω)/ω2. It is clearly seen,
that the latter quantity has a maximum near 40 cm−1, whereas
the maximum of the Raman data occurs near 55 cm−1. Results
of theoretical calculations according to equations (2)–(9) are
represented by the full lines. To provide a stringent test for
the theory it is essential to have light-scattering data for VH
as well as for VV geometries. We estimated the ratio of the
(renormalized) sound velocities to be vL/vT ∼ 1.8. This
corresponds to an unrenormalized ratio of vL,0/vT,0 = 1.7,
which leads to a critical disorder parameter γc = 0.198v4

T,0.
(The absolute velocity scale does not enter.) The other
fit parameters are displayed in table 1. The values of the
correlation length used in the theoretical calculations are given
in terms of the Debye cutoff kD. If one uses the formula
units of the material as a coarse-graining unit for the Debye
model, k−1

D should be a fraction of a nanometre. The absolute
value of the correlation length cannot be obtained by the fitting

4
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Figure 4. (a) Depolarization ratio IVH(ν)/IVV(ν). (b) Reduced
Raman intensities (upper: VV, lower: VH), compared with theory.
(c) Reduced DOS g(E)/E 2, compared with theory, using the same
parameters for the elastic model. These parameters are given in
table 1.

procedure. The strength of our model is in relating the neutron
and Raman spectrum and obtaining relative changes of the
model parameters, if sample parameters are changed.

It is remarkable that the theory reproduces not only the
absolute value, but also the spectral shape of the depolarization
ratio ρ(ν). The depolarization ratio varies between 0.44 and
0.39 over the frequency range from 10 to 150 cm−1. As the
value of 〈ρ〉 is controlled by the ratio of the mean-square
Pockels constant fluctuations 〈�a2

1〉/〈�a2
2〉, which turned out

to be ∼0.8, we conclude that the ‘longitudinal’ fluctuations
�a1 are slightly weaker than the ‘transverse’ fluctuations �a2

in the niobium-phosphate glass. This reflects the structural and
geometrical characteristics of the scatterers. Different values
for 〈ρ〉 are expected for glasses with different local structure,
which is consistent with observed values from 0.25 up to the
possible maximum value of 0.75 in a range of materials [17].

In figure 4 the Raman data for 40Nb2O5–60NaPO3 are
compared with the reduced DOS g(E)/E2. Again the theory
is in good agreement with the Raman spectrum for both
polarizations and the neutron data. The parameter γ is fixed by
the density of states from neutron scattering, and the Raman
data provide a value for the fluctuations in the elasto-optical
constants (table 1). Compared to the 20% data (figure 3) the
boson peak occurs at higher frequencies (maxima at 49 cm−1

in the reduced density of states and 60 cm−1 in the Raman
spectra). This corresponds to a smaller γ parameter and a
smaller correlation length (see table 1). With the increase

in Nb concentration the depolarization ratio is slightly lower,
indicating a more pronounced contribution of the longitudinal
Pockels constant fluctuation. Structurally, in the niobium-
phosphate glasses progressive introduction of Nb2O5 may lead
to the formation of corner-shared NbO6 octahedra chains and a
2d phospho-niobate network [28]. This in turn would decrease
the correlation length in the fluctuations of the elasto-optical
constants for the same Debye wavenumber kD.

We note that in contrast to the present theory the previous
theoretical scheme utilized by the Raman community to
discuss the low-frequency Raman enhancement, namely the
‘corrected Shuker–Gammon formula’ [15], did not permit one
to obtain microscopic information about the vibrational and
elasto-optic properties of the materials. Neither did it make any
statement about the depolarization ratio. Within the theoretical
framework used here one can unambiguously determine the
ratio of the mean-square Pockels constant fluctuations from
the depolarization ratio. This is also the case in the theory of
Martin and Brenig [21] for the Raman spectrum of a Debye
solid with spatially fluctuating Pockels constants. However,
to also be in agreement with the density of states from
inelastic neutron scattering and the frequency dependence of
the depolarization ratio, a unified framework that takes into
account the vibrational excitations of a disordered (non-Debye)
solid is necessary. In the theory of reference [12], employed
here, this is achieved by including spatial fluctuations of the
elastic constants.

Finally, we would like to comment on the ‘offset’ of
the Raman data in comparison with the theoretical model
below the low-frequency wing of the boson peak. Our theory
shares the feature of the theory of Martin and Brenig [21]
that the intensity vanishes with ν → 0 as I (ν) ∝
ν2. In many experiments, instead, a constant offset in the
intensity is observed, which is roughly proportional to the
temperature. This contribution can be attributed to the presence
of anharmonicity in the vibrational dynamics. A recent
theoretical work on the vibrational spectrum of disordered
solids that includes anharmonic effects [29] predicts a sound
attenuation constant which is proportional to the squared
frequency and the temperature. If this contribution is added to
the self-energy in the theory of Raman scattering we obtain a
low-frequency enhancement of the intensity, which is constant
and proportional to temperature. The influence of anharmonic
interactions provides an avenue for further research.

5. Conclusion

We have shown that the measured inelastic neutron and
low-frequency Raman spectra of niobium-phosphate glasses
can be quantitatively described by a unified model that
includes spatial fluctuations in both the elastic constants of the
disordered medium and the elasto-optical (Pockels) constants.
The value of the depolarization ratio for Raman scattering is
determined by the mean-square Pockels constant fluctuations,
while its frequency dependence is modulated by the vibrational
disorder of the elastic medium.

5



J. Phys.: Condens. Matter 23 (2011) 254212 A Schulte et al

Acknowledgments

We thank T Cardinal for help with the sample preparation.
This work was supported in part by NSF grant DMR-0421253
and by the Neutronenquelle ‘Heinz Maier-Leibnitz’ (FRM II)
through the allocation of beam time. AS and WS are grateful
for travel support through the BaCaTec program.

Appendix

We want to calculate the reciprocal space integral occurring in
equations (4) and (8):

χ(z) = 1

(2π)3

∫
|k|<kD

d3k C̃(k)
k2

−z2 + k2[v2 − �(z)] (10)

with z = ω + iε, and one has to insert the appropriate
quantities v ≡ vL,T,0 and � ≡ �L,T, respectively. Defining
Aξ = 1

(2π)3

∫
|k|<kD

d3k e−k2ξ 2
, we have C̃(k) = 1

Aξ
e−k2ξ 2

, and
equation (10) becomes

χ(z) = 1

2π2 Aξ [v2 − �(z)]
∫ kD

0
dk

e−k2ξ 2
k4

− z2

v2 − �(z)︸ ︷︷ ︸
s2

+k2

= 1

2π2[v2 − �(z)]
[

C̃(kD) k3
D ϕ(s/kD)

+ 2ξ 2
∫ kD

0
dk̃ C̃(k̃) k̃4 ϕ(s/k̃)

]
(11)

where the second line follows from an integration by parts. The
auxiliary function ϕ(u) is given by

ϕ(u) =
∫ 1

0
dκ

κ4

κ2 − u2

=
[

1

3
+ u2

(
1 + u

2
[ln(1 − u) − ln(−1 − u)]

)]
. (12)

The branch cut of the complex logarithm has to be taken along
the negative real axis. As this function is not singular, the
numerical integral on the right-hand side of equation (11) can
be readily performed.
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