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Exercises in ”Advanced Statistical Physics”

Problem set 2, due June 5th, 2019

Problem 4) Mean field correlations in the Ising model

Consider an Ising modell on the d dimensional cubic lattice (i.e., square lattice in 2D,

simple cubic in 3D etc.) with periodic boundary conditions and inhomogeneously fields

H = −J
∑
<ij>

Si Sj −
∑
i

hi Si. (1)

In class, we have shown the exact relation Gij := 〈SiSj〉−〈Si〉〈Sj〉 = kBT
∂〈Si〉
∂hj

. Using this

result in the limit hi → 0 ∀ i allows us to calculate the correlations Gij.

Here, we will use the Bragg Williams approximation. In this approximation, the mean

magnetization at site i obeys the implicit equation.

mi = tanh[β(J
∑

Neighbors j

mj + hi)]. (2)

Consider the regime T > Tc and the limit hi → 0. In this limit, Eq. (2) can be Taylor

expanded for small mi.

(a) Show that, in linear approximation, Gij has the form

Gij = G(~ri−~rj) =
1

(2π)d

∫
d~p G̃(~p)ei(~ri−~rj)~p with G̃(~p) =

1

1− β
βc

1
q

∑
Neighbors j

cos(~p~τj)
,

(3)

where the vector ~ri is the position of site i and the vector ~τj points from one site to

the site of its jth neighbor. What is the integration volume
∫
d~p ?

Hint: First establish a linear equation hi =
∑
j Bijmj. This gives ∂mi

∂hj
= B−1ij . For

symmetry reasons, the elements Bij of the (N×N) matrix B depend only on ~ri−~rj,
i.e., Bij = B(~ri − ~rj). Then diagonalize B by Fourier transform and invert it.

(b) Show: Close to Tc, the function G̃(~p)−1 can be expanded as

G̃(~p)−1 ≈ β

βc
(t+ p2v(p̂)) (4)

with t = βc/β − 1, where v only depends on the unit vector p̂ in the direction of ~p.

Calculate v(p̂) for arbitrary dimensions.

(c) Consider specifically the one dimensional case. Calculate G(x) using the approx-

imation (4) and replacing the integration boundaries in
∫ π
−π dp... by

∫∞
−∞ dp... (use

Residues). Alternatively, you may also try to calculate G(x) directly from Eq. (3)

without further approximations.

Show G(x) ∝ e−x/ξ and calculate ξ as a function of t.



Problem 5) Ising antiferromagnet in Bragg-Williams approximation

Consider a two dimensional Ising antiferromagnet on the square lattice. The energy

function is H = −J∑<ij> Si Sj with J < 0. A suitable order parameter q for the

antiferromagnetic order is the so-called staggered magnetization: We separate the lattice

in checkerboard-manner into two sublattices a, b and define the sublattice magnetizations

(per sublattice site) ma and mb. The total magnetization per site is then given by m =

(ma +mb)/2 and the staggered magnetization by q = (ma −mb)/2.

Your task in this problem is to calculate the phase diagram in Bragg-Williams-approximation

as a function of T and m.

(a) Determine the free energy per site, F (q,m)/N , for given q and m in Bragg Williams

approximation.

Hint: To determine the Bragg Williams entropy of the two sublattices, the best way

is to calculate it separately for each sublattice and then add it up.

(b) Consider the case m = 0. Minimize F (m = 0, q) with respect to q and determine the

temperature Tc of the phase transition. Compare your result with the result from

Problem 3 and discuss your findings.

(c) Now consider the general case, m 6= 0. Argue that you must have ∂2F
∂q2

∣∣∣
q=0

= 0 at the

phase transition. Use this to determine the location of the antiferromagnetic phase

transition, Tc, as a function of m. You may use Mathematica.

Problem 6) Ising model with infinite range

Another example of an exactly solvable model with a phase transition is the Ising model

with infinite range interactions, i.e., the energy function H = − J
2N

∑
ij SiSj − H

∑
i Si,

where N is the number of spins and the sum runs over all spins.

(a) Show that the partition function can be written exactly as

ZN =
N∑

M=−N

(
N

N−M
2

)
exp [β(

J

2N
M2 +HM)] (5)

with M =
∑
i Si = Nm.

(b) For large N , you can approximate the binomial coefficient by the Stirling formula

and the sum by an integral. Use this to rewrite the partition function in the form

ZN = N
∫ 1

−1
dm e−βNf(m) (6)

and give the explicit expression for f(m).

(c) At N →∞, the integral (6) is dominated by the minimum m0 of f(m) and you can

approximate f(m) ≈ f(m0) + 1
2
f ′′(m0)(m−m0)

2. Show that the free energy of the

system is then given by F = Nf(m0) up to non-extensive corrections.

(d) Discuss your result. Show that the system has a phase transition and calculate the

transition temperature. What critical exponents do you expect?


