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Exercises in ”Advanced Statistical Physics”

Problem set 3, due June 19th, 2019

Choose two out of the three following problems.

Problem 7) Ginzburg Landau expansions for trigonal symmetry

Consider a system with a two dimensional order parameter ~n = (nx, ny) in a system with

trigonal symmetry, i.e., invariance under rotation by an angle φ = 2π/3. Construct the

Landau expansion for this situation. Proceed as follows

(a) Construct the 2×2 rotation matrix D for this rotation. (obviously D3 = 1 is the unit

matrix.) For any given function f(~n), the function g(~n) = f(~n) + f(D~n) + f(D2~n)

is invariant under trigonal transformations. Use this to construct all invariants up

to fourth order of nx, ny.

Example: To second order, we start by constructing all possible second order ex-

pressions in nx, ny, i.e., f(~n) = n2
x, n

2
y, nxny, and calculate the corresponding g(~n).

The only non-vanishing outcome has the form g(~n) ∝ ~n2 = n2
x + n2

y.

(c) Use the invariants from (b) to construct a Landau expansion.

The result has the form

F/N = a+
b

2
~n2 +

c

3
nx(n

2
x − 3n2

y) +
d

3
ny(n

2
y − 3nx)

2 +
e

4
(~n2)2 (1)

Do you expect a continuous phase transition or a first order phase transition?

(d) Now assume that, in addition, the system is invariant under sign reversal, ~n↔ −~n.

The symmetry is then hexagonal, and some of the terms in the expansion above

are forbidden. Which ones? What implications does this have for the nature of the

phase transition?

(e) (Bonus) Construct the Landau expansion of the hexagonal system up to sixth order.

Show that all invariants are fully isotropic up to fourth order ((~n)2 and (~n)4) and

that you have only two linearly independent invariants at sixth order, the isotropic

one (~n)6 and an anisotropic one, A = n6
x − 15n4

xn
2
y + 15n2

xn
4
y − n6

y.

Let Bennett Karetta tell you about my motivation to give you this problem.



Problem 8) Modulated phases and Lifshitz point

Consider a system with a one component order parameter m(~r). In class, we have intro-

duced the Ginzburg-Landau functional F [m(~r] =
∫

d~r
(
f(m) + 1

2
g(∇m)2

)
with positive

stiffness term, g > 0. We will now consider the case where g may change sign. Such

Ginzburg-Landau expansions are used, e.g., to describe systems that exhibit patterned

phases, stripe patterns. Examples are certain magnetic systems, certain polymer systems,

and lipid-water mixtures.

Consider specifically

F [m(~r] =
∫

d~r
( b

2
m2 +

c

4
m4 +

g

2
(∇m)2 +

v

2
(∆m)2 − hm

)
(2)

with c, u > 0.

(a) Minimize F [m(~r)]. The result is the differential equation

bm+ cm3 − g∆m+ u∆2m. (3)

(b) Neglect the term cm3 for now. Carry out a Fourier transformation m(~r) → m̃(~k),

h(~r)→ h̃(~k). and show that Eq. (3) then turns into

bm̃+ gk2m̃+ u(~k2)2m̃ = h̃. (4)

(c) Use Eq. (4) to determine the susceptibility χ̃(~k) = δm̃(~k)/δh̃(~k. Show that its

maximum is always at k = 0 for g > 0, but it can have a maximum at k 6= 0 for

g < 0. Determine the position k∗ of that maximum.

(d) The susceptibility χ̃ diverges at one value of b. Determine the critical point bc(g),

where this happens for g > 0 and g < 0. For g > 0, the singularity marks an

Ising-type transition. For g < 0, it marks a transition to a modulated structure

with characteristic wave vector k∗. The point g = 0 is a special point called Lifshitz

point. What happens with k∗ at the Lifshitz point?

(e) Show that the susceptibility at the Lifshitz point can be written as χ̃(~k) ∝ 1
b(1+k4ξ4)

with ξ = (u/b)1/4. Assuming, as usual, b ∝ (T − Tc), the mean-field exponent ν at

the Lifshitz point is thus given by ν = νL = 1/4, and the exponent γ by γ = γL = 1.

(f) The critical exponent β at the Lifshitz point is the same as that of the Ising model,

βL = 1/2 (Why?). Use this and the results from (e) to determine the upper critical

dimension of the Lifshitz point.



Problem 9) Ginzburg-Landau theory of superconductors

In the Ginzburg Landau theory of superconductors, the order parameter is described by

a complex function ψ(~r), where |ψ(~r)|2/2 is the density of the superconducting fraction

of electrons. The free energy at given external magnetic field ~H is expanded in powers of

ψ and a local, internal magnetic field ~h = ∇× ~A:

F(ψ, ~A) =
∫
d~rg mit g = gn0+α|ψ|2+

β

2
|ψ|4+
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2m∗
|( h̄
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Here e∗ = 2e is the charge of an electron pair and m∗ ≈ 2me their effective mass, the

coefficients β > 0, α depend on the temperature, and the last two terms describe the free

energy density of the magnetic field at fixed ~H.

(a) Consider the homogeneous system (~h = ~const., ψ = const.).

Sketch g for different values of α in the field free case ~H = 0, ~A = 0. Where is the

phase transition? Minimize g and determine the value ψ0 of the order parameter at

the minimum as a function of α.

(b) Next consider ~H 6= 0 and show that you must have ~h = 0 also in this case in the

superconductive case. Thus the superconductor expells the magnetic field. Calculate

the free energy of the normal conductor (i.e., at ψ = 0). At which critical field Hc

do you expect superconductivity to break down?

(c) Minimize F(ψ, ~A) with respect to ψ and ~A and derive the Ginzburg Landau equa-

tions. The solution is

αψ + β|ψ|2ψ +
1

2m∗
(
h̄

i
∇− e∗

c
~A)2ψ = 0 (6)

e∗h̄

2m∗i
(ψ∗∇ψ − ψ∇ψ∗)− e∗2

m∗c
~A|ψ|2 =

c

4π
(∇× ~h) (7)

Together with the Maxwell equation ~Js = c
4π
∇×~h, Eq. (7) gives the superconducting

current.

(d) Now require that the phase of ψ is constant, e.g., real-valued. With this assumption,

you can easily find both important length scales of the system.

Start from equation (6) for the case ~A = 0. Linearize the equation by expanding

about ψ0 (from (a)) up to first order. The result can be cast in the form ξ2∆f = 2f

with f = (ψ − ψ0)/ψ0. This means that f is either zero throughout or decays

exponentially (near surfaces), f ∝ e−r
√
2/ξ. Calculate ξ. What is the behavior of ξ

close to the phase transition?

The length scale ξ is called coherence length.



Consider now the equation for the field, (7), in the case ψ = const. You can use

it to derive an equation of the form λ2∆~h = ~h. This means that ~h is either zero

throughout or decays exponentially (near surfaces), h ∝ e−r/λ. Calculate λ. What

is the behavior of λ close to the phase transition?

The length scale λ is called the London penetration length.

At domain boundaries between normal and superconducting phases, these two length

scales compete with each other. An important dimensionless parameter is their ratio,

κ = λ/ξ. Calculate κ. How does κ behave upon approaching the phase transition?

We will discuss the implications in more detail on the next exercise sheet.


