Exercises in "Advanced Statistical Physics"

Problem set 3, due June 19th, 2019

Choose two out of the three following problems.

Problem 7) Ginzburg Landau expansions for trigonal symmetry

Consider a system with a two dimensional order parameter $\vec{n} = (n_x, n_y)$ in a system with *trigonal* symmetry, i.e., invariance under rotation by an angle $\phi = 2\pi/3$. Construct the Landau expansion for this situation. Proceed as follows

(a) Construct the 2×2 rotation matrix D for this rotation. (obviously $D^3 = 1$ is the unit matrix.) For any given function $f(\vec{n})$, the function $g(\vec{n}) = f(\vec{n}) + f(D\vec{n}) + f(D^2\vec{n})$ is invariant under trigonal transformations. Use this to construct all invariants up to fourth order of n_x, n_y .

Example: To second order, we start by constructing all possible second order expressions in n_x, n_y , i.e., $f(\vec{n}) = n_x^2, n_y^2, n_x n_y$, and calculate the corresponding $g(\vec{n})$. The only non-vanishing outcome has the form $g(\vec{n}) \propto \vec{n}^2 = n_x^2 + n_y^2$.

(c) Use the invariants from (b) to construct a Landau expansion. The result has the form

$$F/N = a + \frac{b}{2}\vec{n}^2 + \frac{c}{3}n_x(n_x^2 - 3n_y^2) + \frac{d}{3}n_y(n_y^2 - 3n_x)^2 + \frac{e}{4}(\vec{n}^2)^2$$
(1)

Do you expect a continuous phase transition or a first order phase transition?

- (d) Now assume that, in addition, the system is invariant under sign reversal, n ↔ -n. The symmetry is then hexagonal, and some of the terms in the expansion above are forbidden. Which ones? What implications does this have for the nature of the phase transition?
- (e) (Bonus) Construct the Landau expansion of the hexagonal system up to sixth order. Show that all invariants are fully isotropic up to fourth order $((\vec{n})^2 \text{ and } (\vec{n})^4)$ and that you have only two linearly independent invariants at sixth order, the isotropic one $(\vec{n})^6$ and an anisotropic one, $A = n_x^6 - 15n_x^4n_y^2 + 15n_x^2n_y^4 - n_y^6$.

Let Bennett Karetta tell you about my motivation to give you this problem.

Problem 8) Modulated phases and Lifshitz point

Consider a system with a one component order parameter $m(\vec{r})$. In class, we have introduced the Ginzburg-Landau functional $\mathcal{F}[m(\vec{r}] = \int d\vec{r} (f(m) + \frac{1}{2}g(\nabla m)^2)$ with positive stiffness term, g > 0. We will now consider the case where g may change sign. Such Ginzburg-Landau expansions are used, e.g., to describe systems that exhibit patterned phases, stripe patterns. Examples are certain magnetic systems, certain polymer systems, and lipid-water mixtures.

Consider specifically

$$\mathcal{F}[m(\vec{r}] = \int d\vec{r} \Big(\frac{b}{2}m^2 + \frac{c}{4}m^4 + \frac{g}{2}(\nabla m)^2 + \frac{v}{2}(\Delta m)^2 - hm\Big)$$
(2)

with c, u > 0.

(a) Minimize $\mathcal{F}[m(\vec{r})]$. The result is the differential equation

$$bm + cm^3 - g\Delta m + u\Delta^2 m. \tag{3}$$

(b) Neglect the term cm^3 for now. Carry out a Fourier transformation $m(\vec{r}) \to \tilde{m}(\vec{k})$, $h(\vec{r}) \to \tilde{h}(\vec{k})$. and show that Eq. (3) then turns into

$$b\tilde{m} + gk^2\tilde{m} + u(\vec{k}^2)^2\tilde{m} = \tilde{h}.$$
(4)

- (c) Use Eq. (4) to determine the susceptibility $\tilde{\chi}(\vec{k}) = \delta \tilde{m}(\vec{k})/\delta \tilde{h}(\vec{k})$. Show that its maximum is always at k = 0 for g > 0, but it can have a maximum at $k \neq 0$ for g < 0. Determine the position k^* of that maximum.
- (d) The susceptibility $\tilde{\chi}$ diverges at one value of b. Determine the critical point $b_c(g)$, where this happens for g > 0 and g < 0. For g > 0, the singularity marks an Ising-type transition. For g < 0, it marks a transition to a modulated structure with characteristic wave vector k^* . The point g = 0 is a special point called Lifshitz point. What happens with k^* at the Lifshitz point?
- (e) Show that the susceptibility at the Lifshitz point can be written as $\tilde{\chi}(\vec{k}) \propto \frac{1}{b(1+k^4\xi^4)}$ with $\xi = (u/b)^{1/4}$. Assuming, as usual, $b \propto (T - T_c)$, the mean-field exponent ν at the Lifshitz point is thus given by $\nu = \nu_L = 1/4$, and the exponent γ by $\gamma = \gamma_L = 1$.
- (f) The critical exponent β at the Lifshitz point is the same as that of the Ising model, $\beta_L = 1/2$ (Why?). Use this and the results from (e) to determine the upper critical dimension of the Lifshitz point.

Problem 9) Ginzburg-Landau theory of superconductors

In the Ginzburg Landau theory of superconductors, the order parameter is described by a complex function $\psi(\vec{r})$, where $|\psi(\vec{r})|^2/2$ is the density of the superconducting fraction of electrons. The free energy at given external magnetic field \vec{H} is expanded in powers of ψ and a local, internal magnetic field $\vec{h} = \nabla \times \vec{A}$:

$$\mathcal{F}(\psi,\vec{A}) = \int d\vec{r}g \qquad \text{mit} \quad g = g_{n0} + \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{1}{2m^*} |(\frac{\hbar}{i}\nabla - \frac{e^*}{c}\vec{A})\psi|^2 + \frac{\vec{h}^2}{8\pi} - \frac{\vec{h}\vec{H}}{4\pi}$$
(5)

Here $e^* = 2e$ is the charge of an electron pair and $m^* \approx 2m_e$ their effective mass, the coefficients $\beta > 0$, α depend on the temperature, and the last two terms describe the free energy density of the magnetic field at fixed \vec{H} .

- (a) Consider the homogeneous system (*h* = const., ψ = const.).
 Sketch g for different values of α in the field free case *H* = 0, *A* = 0. Where is the phase transition? Minimize g and determine the value ψ₀ of the order parameter at the minimum as a function of α.
- (b) Next consider $\vec{H} \neq 0$ and show that you must have $\vec{h} = 0$ also in this case in the superconductive case. Thus the superconductor expells the magnetic field. Calculate the free energy of the normal conductor (i.e., at $\psi = 0$). At which critical field H_c do you expect superconductivity to break down?
- (c) Minimize $\mathcal{F}(\psi, \vec{A})$ with respect to ψ and \vec{A} and derive the Ginzburg Landau equations. The solution is

$$\alpha\psi + \beta|\psi|^2\psi + \frac{1}{2m^*}\left(\frac{\hbar}{i}\nabla - \frac{e^*}{c}\vec{A}\right)^2\psi = 0$$
(6)

$$\frac{e^*\hbar}{2m^*i}(\psi^*\nabla\psi - \psi\nabla\psi^*) - \frac{e^{*2}}{m^*c}\vec{A}|\psi|^2 = \frac{c}{4\pi}(\nabla\times\vec{h})$$
(7)

Together with the Maxwell equation $\vec{J}_s = \frac{c}{4\pi} \nabla \times \vec{h}$, Eq. (7) gives the superconducting current.

(d) Now require that the phase of ψ is constant, e.g., real-valued. With this assumption, you can easily find both important length scales of the system.

Start from equation (6) for the case $\vec{A} = 0$. Linearize the equation by expanding about ψ_0 (from (a)) up to first order. The result can be cast in the form $\xi^2 \Delta f = 2f$ with $f = (\psi - \psi_0)/\psi_0$. This means that f is either zero throughout or decays exponentially (near surfaces), $f \propto e^{-r\sqrt{2}/\xi}$. Calculate ξ . What is the behavior of ξ close to the phase transition?

The length scale ξ is called *coherence length*.

Consider now the equation for the field, (7), in the case $\psi = \text{const.}$ You can use it to derive an equation of the form $\lambda^2 \Delta \vec{h} = \vec{h}$. This means that \vec{h} is either zero throughout or decays exponentially (near surfaces), $h \propto e^{-r/\lambda}$. Calculate λ . What is the behavior of λ close to the phase transition?

The length scale λ is called the London penetration length.

At domain boundaries between normal and superconducting phases, these two length scales compete with each other. An important dimensionless parameter is their ratio, $\kappa = \lambda/\xi$. Calculate κ . How does κ behave upon approaching the phase transition? We will discuss the implications in more detail on the next exercise sheet.