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Introduction

® in both physics and finance
observe dynamical systems

® experiments and markets
produce lots of data

source:
figure 1:https://commons.wikimedia.org/wiki/File:Wall_
Street_(5899300483) . jpg

figure 2:https://commons.wikimedia.org/wiki/File:CERN_
(7825770258) . jpg
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Basics in Financial Markets

® on an exchange financial instruments are traded

pricing of cash instruments
® buyers and sellers write orders in order book

® price determined by exchange specific rules and entries of order
book

source:https://commons.wikimedia.org/wiki/File:Sao_Paulo_Stock_Exchange.jpg
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Basics

in Financial Markets

how does option pricing
work?

for options strike price is
determined when setting up
the contract

to determine fair strike price
need to know the “value” of
an option

~~ Black-Scholes model

source:https://commons.wikimedia.org/wiki/File:
Cme_building_aerial_view.jpg

6/26


https://commons.wikimedia.org/wiki/File:Cme_building_aerial_view.jpg
https://commons.wikimedia.org/wiki/File:Cme_building_aerial_view.jpg

Basics in Financial Markets

in principle we have four types of market participants

definition: market participants

® speculators take risks in buying assets

7/26



Basics in Financial Markets

in principle we have four types of market participants

definition: market participants

® speculators take risks in buying assets

® arbitrageurs make riskless profit by trading financial instruments
with different prices on separate markets

7/26



Basics in Financial Markets

in principle we have four types of market participants

definition: market participants

® speculators take risks in buying assets

® arbitrageurs make riskless profit by trading financial instruments
with different prices on separate markets

® hedgers try to compensate risks with suitable transactions

7/26



Basics in Financial Markets

in principle we have four types of market participants

definition: market participants

® speculators take risks in buying assets

® arbitrageurs make riskless profit by trading financial instruments
with different prices on separate markets

® hedgers try to compensate risks with suitable transactions

® investors try to make profit with long term ownership
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definition: Wiener process (Brownian motion)
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for 0 < t < t': Xerr — Xe is independent of X for s < t
Xeprr — Xe o< N(0, )
Xt is continuous in t almost everywhere
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definition: Wiener process (Brownian motion)

a real stochastic process X = (X;, t € 1) is called Wiener process iff:
Xo = 0 almost everywhere
for 0 <t <t': X,y — X, is independent of X; for s < t
Xeprr — Xe o< N(0, )
Xt is continuous in t almost everywhere

definition: geometric Brownian motion

let X be a Wiener process then W; = aexp ((,u = %2) t + oX; ) with

a,o, u € R is called geometric Brownian motion, p is called drift and o
volatility
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1
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the interest rate r of the riskless asset is constant

the market is infinitely liquid and frictionless

assets are traded continuously

the stock S exhibits a strictly positive geometric Brownian motion
the volatility o is constant

the stock does not pay dividends
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the market is arbitrage free
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M(t) = N(0) exp(rt)
this is solution of the ODE:
dn = rM(t)dt

assume stock price S to be similar but perturbed by stochastic
fluctuation, deterministic part:

dS = pS(t)dt
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for dS = pS(t)dt + oS(t)dX(t) in 1td calculus we obtain:
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The Black-Scholes Equation

in heuristic derivation made use of Black-Scholes assumptions, now
option price (option value) is:

0 =0(S,1)
It6 process, using Itd’s lemma yields:

0

2
90 90 , 1 260) dt+aS(t)a—ng(t)

do(S,t) = <at + uS(t)g + E(US(t)) 552

(00 1 , 670 90

where we used:

dS = pS(t)dt + oS(t)dX(t)
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The Black-Scholes Equation

option price (option value) should depend on how liquid writer is, the
writer should own a fraction of the underlying A(t) and a cash amount
M(t) such that:

O(S,t) = A(t)S(t) + N(¢)
therefore:
dO(S,t) = A(t)dS(t) + rM(t)dt

since A(t) should be changed as reaction to a fluctuation, this should
coincide with:

dO(S,t) = (92 + 3(0S(£))25:2) dt + 525(1)
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The Black-Scholes Equation

have

A(t)dS(t) + rM(t)dt = (%? + %(asu)ya%) dt + 2245(t)
get:
{A(t) =22
rM(t) = 92 + 1(05(1))* 92
with:

O(S,t) = A(t)S(t) + N(¢)
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The Black-Scholes Equation

have

get:

with:
O(S,t) = A(t)S(t) + N(t)
eliminate dS and plug in TT:
90 1 L(0S())? 29 +r5(t)22 — r0 =0

the Black-Scholes equation
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Discussion of the Black-Scholes Model

90 4 1(oS(1)22Q + rS(t)22 — r0 = 0

® is independent of drift u
® interest rate r is accessible information

® volatility o is not directly accessible
. ! .
~> use solution O(S, t) = O(S, t, oimp) =current market price
~+ data shows o, not constant, violates assumption 5
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Limitations of the Black-Scholes Model

stock price performs a geometric Brownian motion, but:
B Steinhoff int. Holdings N.V... (Frankfurt)
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Limitations of the Black-Scholes Model

B Volkswagen St (Frankfurt) (in EUR)

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

source:https://www.ariva.de/

~~ underestimation of extreme moves, violates assumption 4
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® most stocks pay dividend, violates assumptions 6
® the market is not arbitrage free, violates assumptions 8

® markets are neither infinitely liquid nor frictionless, violates
assumptions 2

~> however in practice Black-Scholes model often good approximation,
risks resulting out of false model assumptions can partly be hedged

~ Black-Scholes model can serve as basis for more refined model

19/26



Financial Crashes

extreme moves of single stocks more likely than expected, what about
market indices?

20/26


https://arxiv.org/abs/cond-mat/9712005v3

Financial Crashes

extreme moves of single stocks more likely than expected, what about
market indices?

s o/ 4

1ko, o Lo . co, / ) )
5 0.2 0.15 0.1 0.05 0
Draw Down (DD)

source:https://arxiv.org/abs/cond-mat/9712005v3

draw down: relative loss from local maximum to next local minimum

20/26


https://arxiv.org/abs/cond-mat/9712005v3

Financial Crashes

extreme moves of single stocks more likely than expected, what about
market indices?

s o E

1ho, o Lo ) oo, / ) . 4
5 0.2 0.15 0.1 0.05 0
Draw Down (DD)

source:https://arxiv.org/abs/cond-mat/9712005v3
draw down: relative loss from local maximum to next local minimum

change of exponential behaviour can be explained by a change of market
dynamics

20/26


https://arxiv.org/abs/cond-mat/9712005v3

Financial Crashes

extreme moves of single stocks more likely than expected, what about
market indices?

s o E

1ho, o Lo ) oo, / ) . 4
5 0.2 0.15 0.1 0.05 0
Draw Down (DD)

source:https://arxiv.org/abs/cond-mat/9712005v3
draw down: relative loss from local maximum to next local minimum

change of exponential behaviour can be explained by a change of market
dynamics

~> phase transition
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Financial Crashes
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Financial Crashes

W Dow Jones (indizes US)

1985 1987

source:https://www.ariva.de/

~~ earthquake models

2700
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Financial Crashes

not all crashes are earthquake like

B Dow Jones (ndizes US)

A M)‘\,;L
BB urRen -
M W \me g“r‘f\f‘“ ,\I

N}‘ ) ’v.,/“/ LA 11500
/\U\W \LW M‘vﬁ M 11000

2007 2008

source:https://www.ariva.de/

22/26


https://www.ariva.de/

Financial Crashes

® consider N; traders i, with same trading volume

23/26



Financial Crashes

® consider N; traders i, with same trading volume

® at each time step t, each trader can buy (¢; = 1), sell (¢; = —1) or
wait (¢; = 0)

23/26



Financial Crashes

® consider N; traders i, with same trading volume

® at each time step t, each trader can buy (¢; = 1), sell (¢; = —1) or
wait (¢; = 0)

N
e price change AS(t,) < > &i(ts)
i=1

23/26



Financial Crashes

® consider N; traders i, with same trading volume

® at each time step t, each trader can buy (¢; = 1), sell (¢; = —1) or
wait (¢; = 0)

N
e price change AS(t,) < > &i(ts)
i=1

e decision based on rational assessment and environment (information
from colleagues and market)
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® at some point have bonds between traders with probability p, = N%,
then cluster bond in similar fashion and so on

Nc

® now have clusters with cluster size s, and AS(t,) x > scdc(tn)
c=1

® for b < 1 probability for cluster of size s is

pe(s) = L5 exp(—(1 — b)3s), for 1 < s < N;

3
Sit3

e for b = 1 critical point, clusters of all sizes

® for b > 1 more and more traders join biggest cluster

if big cluster emerges and decides to sell ~~ crash
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Summary

® financial markets and assets can be modelled with statistic methods

limited data

® unknown micro dynamics

models have restricted predictability
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