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ABSTRACT Systems that exhibit a first-order phase transition in the
bulk, such as binary alloys where the order parameter vanishes discontinu-
ously at some critical value of a control parameter, may show a continuous
vanishing of the local order parameter at the surface. This “surface-induced
disordering” is described theoretically as a variant of critical wetting, where
an interface between the locally disordered surface and the ordered bulk
gradually moves towards the bulk. We test this description by Monte Carlo
simulations for a body centered cubic model alloy, with interactions be-
tween nearest and next nearest neighbors, for which the phase diagram in
the bulk has been calculated very accurately. A critical vanishing of the
order parameter components is found both for the (110) and the (100)
surface. In contrast to the theory, the simulations indicate different criti-
cal exponents v from the order parameter of the B2 phase and the order
parameter of the DO3 phase. Observations from simulations for the face
centered cubic lattice and from experiments are also briefly discussed.

1 Introduction

Critical behavior at surfaces of systems that undergo a second-order phase
transition has found extensive attention during the last thirty years and is
now rather well understood [1, 2, 3, 4]. Although first-order phase transi-
tions are much more common in nature, their surface effects have received
much less attention so far: from a theorist’s perspective, the lack of a di-
verging correlation length in the bulk makes them much less interesting [5],
and thus, it came later - and as much of a surprise! - when Lipowsky [6]
discovered that a critical vanishing was possible for the order parameter
at the surface of a system that exhibited a discontinuous transition in the
bulk.

It turns out that solid binary alloys undergoing order-disorder transi-
tions in the bulk (such as Cu-Au and Fe-Al alloys [5, 7]) should be suitable
systems to observe this “surface induced disordering” (SID) [6], and some
corresponding observations were in fact reported [8, 9, 10, 11] (even before
there was a theoretical explanation [8]). Unfortunately, the quantitative
interpretation of such experiments is often difficult due to various compli-
cations (e.g., crystallographic surface roughness, surface steps, chemisorbed
impurities, etc.), and due to the fact that the microscopic interactions be-
tween the atoms are neither known accurately in the bulk nor near the
surface. Thus, it is very desirable to study this problem with computer
simulations: In a computer experiment, we can provide an absolutely per-
fect, rigid surface (Fig. 1), all the interactions of a model can be chosen at
will and are hence precisely known [12].

In fact, surfaces of binary alloys were studied in terms of an Ising model
by David Landau and one of the present authors already 25 years ago
[13], but there the model was restricted to a nearest neighbor interaction.
For simple cubic (sc) and body centered cubic (bec) lattices, only second
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order transitions are then possible in the bulk [14, 15]. However, first order
transitions do occur for nearest neighbor face-centered cubic (fce) lattices,
which provide a crude model for Cu-Au alloys [14, 15]. It turns out that
a (100) surface of this model is an example for surface-induced ordering
(SIO) [6], since the surface is less“frustrated” than the bulk [16, 17], and
hence two-dimensional order in the surface plane sets in at a temperature
that is higher than the ordering temperature of the bulk. Only when the
surface plane is a (close-packed) (111)-plane, does SID occur [17].

Here we shall focus exclusively on the case of the bcc lattice, where one
finds both the B2 structure and the DOjs structure, if interactions (which
disfavor occupancy by atoms of the same type) both between nearest and
between next nearest neighbors are allowed for [18, 19]. Surface-induced
disordering in this model has now been studied since 10 years already [20,
21], but as we shall see below, important questions still remain open.

9, —
s [ B2
Pip—
P~
Do,
6
0
Figure 1:

Left: Schematic picture of the surface of a binary (AB) alloy at z = 0 (the shading
indicates that this may represent an inert hard wall). Different nearest-neighbor
interactions between different atoms (circles) or between atoms and the wall are
indicated by different types of lines. For a discrete description, lattice planes
parallel to the surface are labelled by positive integers n, while in the continuum
description ¢ oordinates parallel (p) and perpendicular (2) to the surface are used,
as indicated. Right: Body centered cubic lattice showing the B2 structure (upper
part) and the DOgs structure (lower part). The assignment of four sublattices
a,b,c,d is indicated. These structures (B2, DO3s) as well as the disordered A2
structure (random occupation of lattice sites by the two kinds of atoms in the
binary alloy) occur in the Fe-Al-system.
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In Sec. 2, we shall briefly review the theoretical background about SID,
while Sec. 3 explains the model and comments about our simulation meth-
ods. Sec. 4 summarizes our main results, while Sec. 5 gives our conclusions.

2 Theoretical background

On a qualitative level, surface-induced disordering can already be under-
stood within a simple Landau theory [6]. If one has only a single component
order parameter (m) , the free energy functional F(m) can be written as

Fimh = [ {fb<m> + (‘;—m)} HhmE=0), )

where f,(m) is the free energy density of the bulk, g > 0 is a constant
(the term g(dm/dz)?/2 describes the free energy cost of order parameter
inhomogeneities), and fs is a (bare) surface free energy (assuming short
range interactions with the surface). Taking, e. g.,
_T o2 U 4 U 6
fo(m) = gm” — am” + =m”, (2)
with coeflicients r,u,v > 0, a first order transition occurs in the bulk at [5]
re = 3u?/(16v) where the order parameter m; jumps discontinously from
zero (for 7 > r.) to my = £(3u/4v)'/? for r < r..
In the presence of the free surface, Eq. (1) is minimized by the bulk
equation

gd*m/dz* = 8fy/Om (3)

subject to the boundary condition at z =0
. dm
gdm/dz = —0fs(m)/0Om  with |gE = v/2¢gfp(m). (4)

Assuming that the surface does not discriminate between the two signs
of the order parameter, the simplest choice for f,(m) is fs(m) = cm?
[1, 2, 3]. Then the solution of Eq. (4), which yields the order parameter
my = m(z = 0) at the surface, is found from an analogue of the Cahn
construction [22] for wetting phenomena [23], see Fig. 2. One can see that
for large enough c the solution for m; moves continously to zero as r — r_
(when the middle minimum of f(m) for m = 0 becomes equally deep as
the minima for +my). Working out the algebra, Egs. (2)-(4), one finds (for

c>.\/97c)
my o (1. — )P, B =1/2. (5)



Physically, this behavior can be interpreted in terms of a layer of the
disordered phase intruding from the surface into the bulk near r. (Fig. 3).
The interface between this disordered layer and the ordered phase has an
intrinsic width wg = 2&, and its center is at an average distance L from
the surface, and as r — r, this distance diverges (Fig. 3).

(b)

Figure 2:

Cahn construction (schematic) for surface-induced disorder in a system with a
one component order parameter m at bulk coexistence (a) and off coexistence
and (b). Dashed line shows surface term fi(m) = 0fs(m)/dm = cm for critical
wetting; dotted line for partial wetting. From Haas et al. [20].
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Figure 3:

Order parameter profiles m(z)/m associated with SID. If case (a) persists up to
re, the surface stays ordered at r., only some reduction of m(z) over a range of
the bulk correlation range £, occurs. Case (b) shows SID: a layer of thickness L
has disordered already at r < r¢, and as r — ¢, the interface (at mean position
z = L) advances into the bulk, according to L o | In(r.—r)| for short range surface
forces. The surface order parameter mi = m(z = 0) then vanishes continuously
according to Eq. (5). From Dosch et al. [11].
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So far our discussion has been strictly on the mean field level. Since the
bulk of the system is not critical, one can expect fluctuations to be neg-
ligible, apart from fluctuations of the local position £(7) of the interface
between the disordered surface layer and the ordered phase in the bulk (7
is a coordinate in the directions parallel to the surface). As the interface
moves into the bulk, capillary-wave-type excursions of larger and larger
wavelength become possible. These introduce long-range correlations par-
allel to the surface, up to the length scale §| which diverges at r..

These considerations motivate the use of the effective interface Hamilto-
nian,

HossttyiaT = [ ap{ (927 +va(0) | ©)

where the capillarity parameter w is a dimensionless constant related to &,
and the interfacial tension o, w = kgT/[4mc&?], and the potential V(¢)
describes effective interactions between the interface and the surface. SID
is identified as a depinning of the interface from the surface. The effective
potential Vo () can be written as [6]

Vo(0) x exp(—2¢/&) +tl, toxcr.—r (7
A renormalization group treatment [24] of Eq. (6) then gives [6]
U=(0) o &t™, g oct™), €L oc&t™ ®)

with £, describing the interfacial width (or roughness, respectively) and
the exponents (1, 3, || and vy (for 0 < w < 1/2) [6]

Br=(1+w)/2, Bs=0(og), v;=1/2, v =0(log). (9)

More precisely, one finds £/&, = (1/24+w) In(1/t), &1 /& = /w[In(1/t)]*/?[6].

A caveat important for the present case, however, is that the theory
summarized above should hold for the case of a single-component order
parameter. As will be discussed below, the DO3 ordering on the bcc lattice
is described by three order parameter components [18]. The extension of
the mean-field theory of SID to order parameters with several components
shows that deviations from 8; = 1/2 (Eq. (5)) may occur already at the
mean field level [25, 26]. However, a more detailed analysis reveals that
such deviations are only likely at surfaces which break the symmetry of the
order parameter [21]. A renormalization group analysis [21] suggests that
Egs. (8), (9) remain valid asymptotically also in the case of several order
parameters at symmetry preserving surfaces (such as the (110) surface of
the bce-lattice, see below), although the critical region may become much
narrower. Furthermore, the critical exponent v should be v = 1/2 under
all circumstances.



3 Model and simulation methods

We now focus on binary alloys (AB) on the body centered cubic (bcc)
lattice with the ordered structures already shown in Fig. 1. Dividing the
bee lattice into four sublattices a, b, ¢, d as indicated, one denotes by ¢,
the average concentration of component A on sublattice a. Then order
parameter components ¥y, ¥y, U3 are defined as [18]

Uy = (cq—cp+ce—ca)
Uy = (ca+cp—ce—cq) . (10)
U = (Ca —Cp—Cc+ cd)

While ¥; = ¥, = U3 = 0 in the disordered (A2) phase, ¥; # 0 in the
phase with B2 order, and all three components nonzero with ¥ = £U;
in the DO3 phase. Symmetry agreements lead to the Landau expansion
[20, 21]

fo = fot+ A2 4+ Ay(T2 + U2) + BU U, T3 + C1 U7 + Co (U5 + T3)
+ C3 U303 + O, U2(V2 + U2) (11)

Note that a cubic term B ¥;¥,¥3 exists which couples all three compo-
nents together: when ¥y, ¥3 become nonzero, the term ¥, ¥3B acts like an
effective ordering field on the order parameter ¥; of B2-order.
Considering free surfaces, it is important to realize that the surface free
energy depends on the orientation of the surface. First, one component will
always be enriched at the surface: there are no symmetry arguments to
prevent that. Second, only the (110) surface has the same symmetry with
respect to sublattice exchanges as the bulk, and then f; has an expansion
of the same form as fj. For a (100) surface, however, the symmetry with
respect to the exchange of sublattices (a,c) < (b,d) is broken.The surface
enrichment of one component then induces an effective ordering surface
field hy, which couples to the order parameter ¥; [27]. Other ordering fields
coupling to ¥y and ¥3 are still forbidden by symmetry, while they would
be allowed (and thus in general nonzero) for the case of (111) surfaces [21].
These orderings and phase transitions between them can be simply ob-
tained from an Ising model with ”antiferromagnetic” interactions V' be-
tween nearest and V,,,, between next nearest neighbors [18, 19, 20, 21],

H=V > SiSi+Vann Y, SiS;—HD S, Si=+1, (12)

(ij)ynn (i.j)nnn i

where Vi /V = 0.457 was chosen such that the highest temperature which
can still support a B2 phase is about twice as high as the highest temper-
ature of the DO3 phase, as experimentally observed in the Fe-Al system.
Note that the concentration of the alloy is simply related to the average
magnetization per spin, ¢ = (1 + (S;))/2, and the field H is related to the
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chemical potential difference ua — pp of the alloy [14, 15, 18]. As discussed
extensively in the literature [14, 15, 18], it is much more convenient to
carry out simulations in this “semi-grand canonical ensemble” of the alloy,
rather than in the canonical ensemble with fixed c as an independent vari-
able. Since all ensembles are equivalent in the thermodynamic limit, one
can easily translate the results from one ensemble to the other.

Thus, we show here results in the “semi-grandcanonical ensemble” only,
where H is an independent variable (like the temperature T'). Fig. 4 shows
the phase diagram in the bulk [21]. For this study, a multispin coding single
spin flip Metropolis program was implemented on an INTEL PARAGON
parallel processor at the HLRZ Jiilich, using lattices up to 80 x 80 x 80 and
domain decomposition as a standard method of geometric parallelization
[28]. Data analysis was done with standard histogram reweighting [12, 29]
and finite size scaling [12, 30, 31] techniques.

Thus, second-order transitions could be located precisely by the crossings
of the fourth order cumulant of the respective order parameter, and weak
first-order transitions (as they occur near the tricritical point) were found
from the “equal weight rule”. Strong first-order transitions such as the
DO3-A2 transition at low temperatures were located by obtaining the free
energy of the two phases as a function of H via thermodynamic integration
[12, 32]. It turned out that the first-order DO3-B2 transition was rather
weak even at the critical end point, due to the proximity of the tricritical
point (Fig. 4). A study of SID at such weak 1°¢ order transitions would
require system sizes so huge that it is still not yet feasible today.
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Figure 4:

Left: Global phase diagram of our model {Eq. (12)} in the T — H plane (left
part), indicating the three phases. Solid lines mark first-order transitions; dashed
lines second-order transitions. Arrows indicate the positions of a critical end point
(cep) and a tricritical point (tcp). Right: Magnification of the part of the phase
diagram near the cep, including error bars to show the accuracy with which such
phase boundaries can be determined.
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Therefore we focus on the DO3-A2 transition at kT /V = 1, where the
transition occurs at Ho/V = 10.00771 (1) [21, 28]. Note that more than
103 different states were used for the integration to reach this very good
accuracy.

The surface simulations were then perfomed in a L x L x D geometry,
with periodic boundary conditions in the L direction and free boundary
conditions in the D direction. We varied D from 100 to 200 (to check that
finite size effects associated with D are negligble) and L from 20 to 100 (to
carry out a finite size scaling analysis with L). Runs of a total length of up
to 2 x 10 Monte Carlo sweeps were carried out.

4 Simulation results and analysis

We first focus on free (110) surfaces and discuss the “profiles” of the order

parameter Wy3 = [(¥3 + ¥3) /2]1/2, Fig. 5. Note that the strong field
H implies that the very top layer of a free surface is completely filled
with A atoms, i.e. all Ising spins S; = +1 in that layer, and all order
parameters ¥, vanish there. Thus, unlike sketched in Fig. 1, we label our
layers n = 1, 2, ...starting out from the second layer, the top layer is n = 0.
One sees from Fig. 5 that the layers near the surface become more and
more disordered as H — Hp, and an interface forms and moves towards
the bulk.
We can fit the profile by the function

__ bulk -1
W3 (n) = U™ {1 +exp[-2(z —(0)) /W]} (13)
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Figure 5:

Left: Profiles of W23 near a (110) surface at temperature kgT/V = 1 for differ-
ent fields H (in units of V) as indicated. Right: Position of the interface (£) as
estimated from a fit to Eq. (13) plotted vs. the reduced distance from the bulk
transition field [21].



to extract both the interface position (¢) (Fig. 5) and the width (Fig. 6).
Near Hj the data is indeed compatible with the predicted logarithmic diver-
gence of {£) and W2, in the regime where (£) exceeds W (Fig. 6). However,
the small range of (Hy — H) /V where the logarithm can be fitted to the
data does not warrant a detailed discussion of the prefactors in that law
[21].
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Figure 6:
Left: Squared interfacial width as estimated from Eq. (13) plotted vs. (H — Ho) /V.
Long dashed line shows squared interface position (£)” for comparison. Right:
Order parameter ¥o3 1 adjacent to the surface planes (H — Hy) /V for different
system sizes L x L x D as indicated. Solid line is the power law Eq. (5) with
B1 = 0.618. From Haas et al. [21].

Finally, the order parameter ¥s3,; in the layer adjacent to the surface
(Fig. 6) is compatible with Eq. (5) but the exponent £; is 81 ~ 0.618,
implying w = 0.236 {Eq. (9)} [21]. This value happens to be similar to (1
for the (111) surface of the fcc antiferromagnetic Ising model [17].

From Fig. 6 (right part) one can clearly recognize that the data for small
L and small (Hy — H)/V deviate from the power law. These “finite-size
tails” can be nicely accounted for by a finite size scaling analysis (Fig. 7),
using the theoretical exponent v = 1/2 {Eq. (9)}. However, an analogous
analysis for the order parameter ¥y yields different exponents, 8; = 0.8,
and v = 0.7 (Fig. 7). While several surface exponents 3; may occur in
systems with several order parameter components under certain conditions
[21, 25, 26], v should remain invariably v|| = 1/2. We have no explanation
for this unexpected discrepancy between simulation and theory.

Finally, we comment on (100) surfaces where an ordering field coupling
to ¥y is present. This is demonstrated in Fig. 8, where the profiles of the
order parameters and the composition ¢ are defined based on the sublattice
occupancies on two subsequent layers of distance ag/2, starting from the
first layer adjacent to the surface plane (the latter is again disregarded, since
it is entirely filled with A, ¢ = 1). The profiles of ¥y show the signature of



C o084t

xi

+ 40x40x100 0o ®) o
® 64*64*148
= 70x70x100
100 | * 72727172 ] |
4 80XB0X100 100
<80xB0x200
¥ 90x90x148 B B,=0.801
= ©100x100x100 = -
o 0 100x100x128 B,=0.618 & v.20.7 . 64*64*148
— © 100x100x148 v,=0.5 — =0 u 70*70*100
o 1 - * 72724172
8 N 480*80*200
= 10 v 90%90*148 f
10 ] ©100*100*100
5 100*100*128
©100*100*148
ceavo 8%
. . . . .
1 10 100 W 1000 10000 1 100 1000
(H-H)/V L

Figure T7:

1
/\1‘|

10
(H—H)V L

Left: Finite-size scaling plot of the surface order parameter Wa3 1 vs. (Ho— H)/V
for system sizes L x L x D as indicated. Data were scaled with exponents v|| = 1/2
and B; = 0.618. Curve shows a theoretical scaling function derived in [21]. The
asymptotic power law is shown by a straight line. Right: Finite size scaling plot
of the order parameter ¥;. Optimal data collapse occurs for 8; = 0.801 and

v = 0.7. From Haas et al. [28]
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Left: Profiles of the total concentration ¢ of A (top) and the order parameters
W1, ¥y3 (bottom) for a (100) surface at H/V = 10.003 (filled symbols) and at
H/V =10.007 (open symbols). Right: Same as left part, but for a (110) surface.
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an effective ordering surface field Hy, induced by the surface segregation
of A [27]. This field in fact reverses the sign of ¥; in the top layers, which
does not happen at (110) surfaces (Fig. 8, right part). However, the effect
is rather weak and does not influence the system significantly deeper in the
bulk. The profiles are very similar to those of the (110) surface, and their
analysis yields very similar results, including an exponent 3; = 0.61 for the
power law (Eq. (5)) of the order parameter W3 1.

5 Conclusions

In the work described here, SID was simulated for the phase transition of
ordered bec alloys from the DOg structure (like FegAl) to the disordered
phase. This study is similar in spirit to related work by Schweika et al. [17]
for the (111) surface of fcc alloys. In the latter case, however, a 50:50 com-
position with u4 —pup = 0 was studied, and neither surface enrichment nor
surface-induced ordering fields H; did occur, unlike in the present model
(Fig. 8). In addition, we find here that the coupling between the (nonequiv-
alent) order parameters ¥; and ¥,3 seems to give rise to novel features,
see Fig. 7 for an example. As emphasized above, the critical behavior of ¥
at the SID transition is not at all understood.

Hence, already this simple model, highly idealized in comparison with
real alloys, exhibits a complex behavior. In real alloys, we expect additional
complications due to long range elastic interactions, giving rise to lattice
distortions near the surface. Also the surface roughness of real surfaces
(steps, islands, etc.) may play an important role; note that on a symmetry
breaking surface, every step changes the sign of the field H;. The available
experiments [8, 9, 10, 11] have concentrated on the case of CuzAu and
can hence neither be compared to this work nor directly to the study by
Schweika et al. [17] Clearly, both additional experiments (searching for SID
in bee alloys) and simulations (careful studies of SID for a model of CuzAu)
would be very desirable.
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