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Abstract

We compare the direct correlation function (DCF) in the nematic phase of uniaxial molecules modelled as soft
ellipsoids with DCFs of the same system in the isotropic phase from simulation and Percus-Yevick theory. The
nematic DCF is determined without approximations from computer simulations, using a scheme that takes into
account explicitly the dependence of the pair correlation on the orientation of the director. The method was
validated by calculating the Frank elastic constants from the DCF through the Poniewierski-Stecki equations and
comparing them with the values obtained from an analysis of order fluctuations.
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1. Introduction

The direct correlation function (DCF) is im-
portant in the statistical mechanics of fluids[1,2].
While the DCF of isotropic phases has been well
studied theoretically [3-10] and by simulation [11],
few studies have been devoted to the DCF of ne-
matic mesophases [12]. Nematic DCF's from simu-
lation have been obtained by Stelzer et al. [13,14]
and Zakharov et al. [15]. However, they neglected
the explicit angular dependence of the pair correla-
tion on the orientation of the director, i.e. the axis
of preferential molecular alignment.

Longa et al. [16] objected to this approximation.
Indeed, when Stelzer et al. used their DCF to esti-
mate the Frank elastic constants [12,17] of the sys-
tem via the Poniewierski-Stecki (PS) expressions
[18], their results disagreed significantly from the
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values published soon after by Allen et al. [19],
who analysed the order tensor fluctuations in the
same model liquid crystal. Since the latter method
is straightforward, the mismatch was most likely
due to an error in the DCF.

Recently, we proposed a way to calculate the
DCEF in a uniaxial nematic liquid crystal without
any approximation from a spherical harmonics ex-
pansion of the two-particle density [20]. We refor-
mulated the PS equations so that the Frank elastic
constants can be computed directly from the ex-
pansion coefficients of the DCF in Fourier space.
We applied the method to the nematic phase of
a model system of soft ellipsoids. For comparison
we also computed the Frank elastic constants from
the fluctuations of the order tensor. We found good
agreement between the values, indicating that our
method of calculating the DCF is reliable.
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In this paper we show data for the two-particle
density and the DCF in the nematic phase. We
also calculate the DCF for the isotropic phase, and
compare it with the nematic DCF, as well as the
isotropic DCF from Percus-Yevick theory.

2. Finding the direct correlation function

In a homogeneous system at equilibrium, the to-
tal correlation function h is defined from the one-
and two-particle densities p(*) and p(®):
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where u; is a molecular axis versor and ris =r; —
ra. The shorter-ranged DCF c is extracted from h
through the Ornstein-Zernike equation [1]
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In a frame where the z-axis points along the di-
rector, all orientation-dependent functions can be
expanded in a basis of spherical harmonics:
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where F = p@, hor ¢, r = |r12|, and £15 = r12/r.
Because of the symmetry of the nematic phase,
only real coefficients with m; + ms +m = 0 and
l1 + 15 +1 even enter the expansion; if the molecules
have uniaxial symmetry, every [; is even, too.

The expansions in Eqns. (3) and (4) allow
Eqns. (1) and (2) to be put in matrix form. Eqn. (1)
becomes a linear system that can be solved for the
coefficients of h by standard numerical methods,
once the coefficients of p(*) and p(*) are known
from simulation. The Ornstein-Zernike Eqn. (2)
is most conveniently solved in Fourier space. This
requires a Hankel transformation [21] of the co-
efficients of h from the previous step, and a back
transformation of the coefficients of c.

3. Model, simulations and data analysis

The particles in our simulations interact through
a simple repulsive pair potential V;;(u;, u;,r;;),
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approximates the contact distance between two
ellipsoids of elongation kK = Gend-end/Csideside =

(14 x)/(1 = x) [22]. We use scaled units defined
in terms of €y, 0g, the particle mass and the Boltz-
mann constant kg. We chose k = 3, a tempera-
ture T = 0.5, and number densities p = 0.24 and
o = 0.30, that correspond to isotropic and nematic
((Py) = 0.69, (Py) = 0.31) states, respectively, the
phase transition happening at ¢ = 0.29.

The pair density p(®) of the isotropic phase was
determined in a system of N = 1000 particles, that
of the nematic phase in systems of N = 1000, 4000,
8000 and 16000 particles. For N = 1000 we used
Monte Carlo (MC) on a workstation, for the larger
systems we resorted to a domain decomposition
molecular dynamics (MD) program on a Cray T3E.
Run lengths were 5-10 million MC or MD steps
depending on system size.

The expansion coefficients of p(*) were computed
from simulation configurations using [23]

pl(;zr)n1l2m2lm(r) =An 92 g(r) (7)
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where g(r) is the radial distribution function, i.e.
the number of molecular pairs at distances between
r and r + 6r, divided by 4mor2?dr. These time-
consuming averages were calculated in part on a
Cray T3E. We have determined coefficients for [;,
up t0 laz = 6 (there are 469) in all systems, and
up t0 lnez = 8 (there are 1447) in the smallest
system (nematic phase), with dr = 0.04.



15

1%
S
g
5 if
g _
D —— Nematic
& Isotropic
~N_ 05 - 4
E
N
0 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12
r

Fig. 1. Average over all orientations wuj,us,f12 of
the two-particle density p(z)(ul,uz,rlz) multiplied by
(47/0)2.
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Fig. 2. Expansion coefficient p(()?))o020(7") of the two-particle
density p(®) (uy,uz,r12).

4. Results and discussion

Fig. 1 shows the pair density p(® (uy, uy,r15) av-
eraged over all orientations uy,us, 2. This func-
tion changes little from isotropic to nematic, in
spite of the difference between the overall densities
0. In both phases, the only structure in this func-
tion is at distances corresponding to the dimension
k = 3 of the particles, indicating the lack of long
range translational order.

Fig. 2 shows the coefficient of p( (uy,uy,r15)
with (ll, my, lz, ma, l, m) = (0, 0, 0, 0, 2, 0), that
describes the correlation between the director and
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Fig. 3. Average over all orientations of the direct correla-
tion function ¢(uy,u2,r12) from simulation, and the Per-
cus-Yevick approximation for the isotropic phase.
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Fig. 4. Expansion coefficient cgooo20(r) of the direct corre-
lation function c(u1,usz,r12).

the intermolecular vector rys irrespective of the
molecular orientations u; and uy. This coefficient
is zero in the isotropic phase, that is rotation-
ally invariant, but non zero in the nematic phase,
reflecting the anisotropy of the latter.

Fig. 3 and Fig. 4 show the corresponding curves
for the DCF. The amplitude difference between the
orientations-averaged DCFs in the two phases is
enhanced with respect to that of the orientations-
averaged two-particle densities. The isotropic DCF
is shorter-ranged and flattens out for r > &, while
the nematic DCF shows large oscillations that per-
sist longer. This can be attributed to the increase



Table 1

Elastic constants for systems with different number of
particles N. PS: Poniewerski-Stecki expressions based on
a DCF from a spherical harmonics expansion of p(2) up
t0 Imaz = 6 (8 for N = 1000; with lmaez < 6 the results
are about 20% worse). OF: order fluctuation analysis. The
statistical error on the last digit is given within parentheses.

N method (K11) (K22) (K33)
1000 PS 055 (2)  0.35(3)  1.56 (4)
4000 PS 0.52 (2)  0.31(1)  1.51(3)
OF 053 (1)  0.30(1)  1.60 (1)

8000  PS 051 (2)  0.33(2)  1.48(3)
16000  PS 051 (1)  0.32(1)  1.43(2)
OF 053 (1)  0.30(1)  1.59 (1)

in the local order, that allows particles to pack
more efficiently in the side-by-side configuration of
the nematic phase. For comparison, we have also
calculated the isotropic DCF connecting Eqns. (2)
and (5) with the Percus-Yevick closure [10]:

c(u1,uz,112) = [A(u1, uz,r12) + 1] (8)
X{]. — exp[Vlz (111, us, rlg)/kBT]}.

Agreement with the simulation result for the
isotropic phase is quite good. Again, the coeffi-
cient cgggo20(r) is zero in the isotropic case and
non-zero in the nematic case.

Various physical quantities can be obtained
from the DCF, e.g. the Frank elastic constants via
the PS theory, as mentioned in the introduction.
The results are summarized in Table 1, together
with those obtained from an order tensor analysis
following Allen et al. [19]. The elastic constants
are important phenomenological parameters for
a quantitative description of bulk liquid crystals.
Here they were used as a test to check our new
approach to the DCF in oriented systems. Indeed,
for the sole purpose of finding the elastic con-
stants, the order tensor method is computationally
more efficient, while of course the DCF, being a
central quantity in density functional theory, has
applications far beyond the calculations of elastic
constants.
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