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Experiments and theories have shown that nematic fluids may adopt inhomogeneous steady
states under shear flow. Here we reproduce and study such states by nonequilibrium molec-
ular dynamics simulations of systems of soft repulsive ellipsoids. Different situations where
a nematic phase coexists with a paranematic phase are examined. In geometries that impose
constant stress on the whole system, we observe shear banding, i. e., separation into two phases
with different local strain rates.

1 Introduction

According to common wisdom, matter at room temperature is either solid, liquid, or
gaseous. However, this is not generally true. Certain materials — often “complex flu-
ids” made of large, organic molecules — assume intermediate structures that combine
properties of solids and liquids. For example, systems of anisotropic, cigar-shaped or rod-
like molecules may exhibit a “nematic” phase, where the molecules have no translational
order, but are still aligned along one preferential direction, the director1. Because of its
intermediate nature, this state of matter is called liquid-crystalline or a mesophase, and
the molecules mesogens, or more specifically nematogens. Liquid-crystalline materials in
which phase transitions between different states are mainly controlled by the temperature
are classified as thermotropic liquid crystals. In solutions of nematogens, mesophase tran-
sitions may also be driven by the concentration of the nematogens. Such liquid crystals
are called lyotropic. Liquid crystals have many technological applications especially in
electro-optics; most well-known to the large public are flat displays.

Complex fluids often show unusual and interesting behavior under flow. Typical exper-
imental setups designed to study such phenomena put the fluid into a state of steady shear
flow by applying external shear stress. Prominent examples are the Couette cell, where flu-
ids are confined between two concentrical cylinders moving at different velocities, or the
Poiseuille rheometer, where the fluid is forced to flow through a capillary tube. The stream-
ing velocity field breaks the isotropy of space in the fluid, just as the director field breaks
the symmetry in a nematic liquid crystal. When a nematic liquid crystal is sheared, one
can thus anticipate interesting effects from the interplay of these two symmetry breaking
fields.
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Shear flow influences the order of liquid crystals at the molecular level, and therefore
modifies macroscopic quantities like the viscosity (shear thinning or thickening). It may
cause flow-controlled transitions between states that differ in their molecular alignment
(shear banding). The behavior of the fluid can be described by a nonequilibrium phase di-
agram spanned by the density, the temperature and the strain rate or the shear stress. Such
a phase diagram exhibits a nematic-isotropic coexistence region that is believed to culmi-
nate in a critical point at a high enough strain rate, in analogy with the equilibrium phase
diagram of a liquid-gas system or of two immiscible fluids2, 3. In contrast to equilibrium
phase diagrams, however, the nonequilibrium phase diagram is not uniquely defined, but
depends on the details of the experimental setup.

In the coexistence region, the nematic and isotropic phases are separated by an inter-
face that again breaks the isotropy of space and influences the molecular orientation in the
nematic phase. This phenomenon is known as surface anchoring. All surfaces impose or
at least favor one particular tilt angle between the director and the surface normal. Specifi-
cally, nematic/isotropic interfaces often favor planar anchoring, i. e., the molecules tend to
lie flat on the surface.

Other important properties of fluid-fluid interfaces are the interfacial tension and the
presence of small undulations, also called capillary waves. In addition to affecting the
molecular order, shear introduces a new time scale into the fluid, 1/γ̇, where γ̇ is the strain
rate. As a consequence, long-lived fluctuations and large structural relaxation times with a
lifetime longer than 1/γ̇ should be destroyed or at least reduced in sheared systems. One
would thus expect that shear affects the long-wavelength capillary waves, which are very
long-lived, and possibly modifies the closely related effective interfacial tension.

Nematic fluids in shear flow have been studied for the last 25 years experimentally,
theoretically, and by computer simulation. Literature overviews can be found in Refs. 2
and 3. Experiments include rheological, optical (e.g. anomalous light scattering) and spec-
troscopical (e.g. nuclear magnetic resonance) techniques. Theoretical studies were based
on generalizations of the Navier-Stokes equations, i. e., coupled hydrodynamic equations
of motion for the nematic order tensor Q and the streaming velocity of the fluid vs, that
depend on the strain rate γ̇ (or its generalisation, the velocity gradient tensor), the density
ρ, the temperature T , and rotational and shear viscosities ηr and ηs. Such equations have
been used to calculate nonequilibrium phase diagrams for thermotropic2 and lyotropic3

liquid crystals in various experimental geometries.
In the project presented here, we have performed a computer simulation of such a sys-

tem. In contrast to the theory mentioned above, that describes the system as a continuum,
we adopt a particle-based approach and study a system of ellipsoids in shear flow. To
our knowledge, this is the first multiphase nonequilibrium simulation of a liquid crystal:
previous simulations we are aware of have been aimed at computing viscosities and other
transport coefficients of homogeneous mesophases. Simulations of inhomogeneous liquid
crystals under shear are particularly challenging, since they require non-standard software
and are computationnally very expensive.

Our paper is organized as follows. In the next section, we define the model and discuss
some technical details. Results are presented in section 3. Finally, we summarize and
conclude in section 4.
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2 Model and Simulation Method

We model molecules in a classical mechanics framework as soft repulsive ellipsoids with
a length to width ratio of 15. This particular choice permits a direct comparison with
previous equilibrium studies of the surface tension4 and capillary wave fluctuations5 of the
nematic-isotropic interface in the same system. Each molecule is fully determined by the
position of its center of mass r and by the unit vector û that identifies its long axis. The
intermolecular potential is

U =

{∑

i<j 4ε0(s
−12

ij − s−6

ij ) + ε0, sij < 21/6

0, otherwise
, (1)

where sij = (rij −σ(r̂ij , ûi, ûj)+σ0)/σ0 is a scaled and shifted distance with σ approx-
imating6 the contact distance of two ellipsoids. All data in this paper are given in reduced
units defined by the energy and length parameters ε0 and σ0, the particle’s mass and the
Boltzmann constant. We perform a Molecular Dynamics (MD) simulation, i. e., the molec-
ular positions ri and the orientations ûi are propagated according to Newton’s equations
of motion, more specifically using the symplectic integration algorithm RATTLE7.

As usually done in this type of simulations, the molecules are contained in a cuboidal
box with periodic boundary conditions. This means that the box is surrounded by mirror
images of itself so as to avoid surface effects. Shear flow can be enforced by moving
the boundaries at constant speed8. In other words, the mirror images along the y axis are
shifted at each time step with respect to the box by an amount γ̇Ly∆t, where Ly is the
length of the box along the y direction. The energy constantly pumped into the system by
this means must be dissipated at the same rate it comes in so that a steady nonequilibrium
state can be reached. We achieved this by coupling the molecular velocities to a Nosé-
Hoover extended Lagrangian thermostat9. We took care that it acts only on the disordered,
thermal part of the velocities, i. e., the velocities minus the streaming velocity of the fluid.
It is important that the thermostat is unbiased by the velocity profile when the latter is not
uniform due to the presence of an interface, as in our case.

Given the intermolecular potential function and the density, temperature and strain rate
parameters, MD allows to measure the streaming velocity field, the order tensor, the stress
tensor, and the viscosities. The order tensor is given by

Q =
1

N

N
∑

i=1

(

3

2
ûi ⊗ ûi −

1

2
I

)

, (2)

where I is the 3×3 unity matrix. The nematic order parameter P2 is the highest eigenvalue
of Q, and the director n̂ is the eigenvector corresponding to P2. The stress tensor (equal to
the negative pressure tensor P ) is given by

σ = −P = −
1

V





N
∑

i=1

mivi ⊗ vi +

N
∑

i<j=1

rij ⊗ fij



 . (3)

The shear viscosity is defined by

ηs =
σxy

γ̇
, where γ̇ =

∂vx

∂ry
(4)
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is the locally observed strain rate, while ∆vx/∆ry = ∆vx/Ly is the globally imposed
strain rate.

At this point, a few remarks regarding the choice of the model are in order. On prin-
ciple, one could of course implement a more realistic molecular potential, that contains
intramolecular degrees of freedom or even atomic detail. This would permit quantitative
comparisons with experiments. Unfortunately, it would also increase the already high com-
putational cost to a currently unbearable extent. Therefore, we have restricted ourselves
to studying a simple, computationally cheap model system. Comparisons are thus mainly
with theories. This reflects the peculiarity of simulations, that have an intermediate posi-
tion between experiments and theories.

In usual bulk simulations of ordinary liquids with periodic boundary conditions, good
results can be obtained with systems of only a few hundred molecules. Mesophases re-
quire larger system sizes, due to the long range ordering and the presence of collective
properties. Nevertherless, thousand molecules will often be sufficient. In order to observe
a phase separation, however, one must use elongated simulation boxes that contain several
thousand molecules, or cubic boxes with even more particles. The smallest systems stud-
ied in this work contained 7200 particles in a box with side ratios 1:8:1. If one wishes to
study interface properties like capillary wave fluctuations, the cross-section of the interface
must be very large, and the necessary number of particles increases by yet another order
of magnitude, totalling about 105. Our largest system contained 115200 particles. It was
initially set up by replicating the system with N = 7200 particles four times along the
x axis and four times along the z axis. Runs of up to a few million MD time steps were
necessary to equilibrate the system and gather enough statistics.

The need for a massively parallel computer is thus evident. Our MD program exploits
parallelism by domain decomposition, i. e., it splits the simulation box into smaller do-
mains that are each processed by a different processor. Only nearest neighbor domains
exchange particles with each other. The speed-up of the program has been tested on the
Cray T3E. It scales well on up to as many nodes as were available (512), though for pro-
duction only one quarter (128) of the maximum was used. The communication paradigm
is MPI.

3 Results

Following a common convention, we label the flow (or velocity) axis x, the flow (or veloc-
ity) gradient axis y, and the third axis, called vorticity axis, z (see Fig. 1). In equilibrium
(i. e., with normal periodic boundary conditions), a biphasic system consists of a slab of
one phase, that is sandwiched between two regions of the other phase. The slab is in-
evitably perpendicular to one of the box sides, usually the longest one. In other words,
there are always two parallel interfaces, that lie either in the xy plane, the xz plane, or the
yz plane. When shear is applied (i. e., with moving boundary conditions), only the two
first cases are stable.

When the interface lies in the xz plane, the two phases are subject to the same common
shear stress σxy , but may have different strain rates γ̇; when the interface lies in the xy
plane, the two phases have the same strain rate, but may experience different shear stresses.
In a Couette rheometer, where the vorticity axis corresponds to the spinning axis of the
cylinders, the two phases form concentric rings in the common stress geometry and annular
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Figure 1. Reference system defined by the velocity profile v and the two possible positions of an interface:
common stress (left) and common strain (right) geometries.

bands in the common strain geometry.
In a system of soft ellipsoids such as the one considered here, the interface aligns the di-

rector in the direction parallel to the surface4 (planar anchoring). Thus the nematic director
n̂ lies on the interface plane. At common stress, two different locally stable arrangements
of the director with respect to the flow direction x are predicted by theory and observed
in experiments, depending on how the system was prepared: parallel (flow-aligning) and
perpendicular (log-rolling). At common strain, only the flow-aligning case is stable.

We have simulated a system with N = 115200 particles in the nematic-isotropic co-
existence region in the common stress, flow-aligning geometry. The average density was
ρ = 0.017, the temperature T = 1., and the strain rates γ̇ ranged from 10−5 to 10−1. In
all cases, the initial configuration was an equilibrated zero-shear system containing two
interfaces. A snapshot of the γ̇ = 10−3 system is shown in Fig. 2.

At low strain rates, the density and the order parameter take two clearly distinct values
in the different phases (Fig. 3). The order parameter in the isotropic phase is almost zero.
In fact, the remaining small value does not differ substantially from that calculated at zero
shear in the isotropic phase. Nevertheless, it should be noted that flow is bound to induce a
tiny amount of order in the disordered phase, since it breaks the isotropy of space. Strictly
speaking, the “isotropic” phase should be more properly called paranematic.

At higher strain rates (γ̇ = 10−2 and 10−1), the two phases merge and the interfaces
disappear. This can be seen by monitoring the order parameter and the density of the sys-
tem along the y axis. At the highest strain rate γ̇ = 10−1, the order parameter profile, that
shows quite pronounced differences in the initial configuration, levels off rapidly within a
few tens of thousand MD steps. The density profile follows more slowly. A similar process
takes place at γ̇ = 10−2, though on a longer time scale.

Having found that the interfaces are unstable at strain rates of γ̇ = 10−2 and beyond,
we chose to focus on the strain rate γ̇ = 10−3 in most further studies, and accumulated
about 2 million MD steps in the common stress, flow-aligning geometry. We set up another
system in the common stress, log-rolling geometry by rotating the initial configuration of
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Figure 2. Left: Snapshot of a common stress, flow-aligning system with γ̇ = 10
−3 (115200 particles). The

reference system and interface geometry are as in the left of Fig. 1. Molecules are coloured according to their
orientation in order to show the difference between the two differently ordered phases. Top right: Detail of the
interface region seen from the vorticity (z) axis. The molecules in the upper, nematic phase are clearly aligned
from left to right along the flow axis (x). Bottom right: Detail of the interface region seen from the flow (x) axis.
Though the lower phase shows some amount of flow-induced order, the view along x is more similar to the view
along z than for the upper phase.

the common stress, flow-aligning case by 90◦ around the y axis, such that the director of
the nematic phase was normal to the flow axis. We ran this system for 1.7 million steps,
and so far it has remained stable. Order parameter and density profiles are identical with
the flow-aligning case, see Fig. 5. A third system of again N = 115200 particles was set
up by rotating the same initial configuration by 90◦ around the x axis, such that it can be
sheared at common strain. The interface lies in the xy plane, as shown in the right part of
Fig. 1. We have not yet accumulated enough data on this system to present them here.

At common stress, nonequilibrium interfaces exhibit another important feature: The
local strain rate in the two coexisting phases is different. This is demonstrated in Fig. 6: the
slope of the velocity profile is higher in the more ordered phase, i. e., the viscosity is lower
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Figure 3. Order parameter (left) and density (right) profiles for common stress, flow-aligning systems at different
strain rates, after more than 100,000 MD time steps. The high order, high density region corresponds to a nematic
phase, the other to an isotropic (or paranematic) phase. At high strain rates, the two phases merge; the still
incomplete merging process is faster for the order parameter than the density, and for the higher strain rate.

there. Intuitively, one can argue that the more aligned the particles are, the less resistance
they oppose to the flow. This is observed both for alignment parallel and perpendicular to
the flow direction, though it is slightly more pronounced in the flow-aligning case, as one
might expect. Shearing induces order and reduces the viscosity, thus the system is said to
“shear thin”. That is consistent with the experience that systems with Lennard-Jones and
similar potentials tend to shear thin: the soft ellipsoid potential is an anisotropic variant of
the purely repulsive Lennard-Jones potential. However, there are also systems that shear
thicken.

In addition to these studies, we have also attempted to assess more systematically the
stability of the interface at different strain rates. To this end, we have simulated smaller
systems of N = 7200 particles in a simulation box with side ratio 1:8:1 at strain rates
between 0.002 and 0.009 in increments of 0.001, for all three geometries. We found that
the interface remains stable up to an average strain rate of roughly 0.006. Interestingly,
the densities of the two coexisting phases do almost not depend on the strain rate at all.
Beyond γ̇ = 0.006, the coexistence region disappears abruptly and the two phases merge
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Figure 4. Approach to equilibrium of the order parameter (left) and density (right) profiles in the common stress,
flow-aligning system with γ̇ = 0.1. The order parameter reacts faster than the density to an applied strain.
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Figure 5. Common stress profiles for the flow-aligning and log-rolling systems with γ̇ = 0.001: order parameter
(left) and density (right).
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Figure 6. Shear banding in common stress velocity profiles: flow-aligning, several strain rates γ̇ (left); flow-
aligning and log-rolling, γ̇ = 0.001 (right).

in one. Combining the results from linear fits to the density and the velocity profiles, one
can construct nonequilibrium phase diagrams. The result for the flow-aligning geometry is
shown in Fig. 7.

4 Conclusions and Outlook

To our knowledge, we have performed the first molecular simulation study of nonequilib-
rium interfaces under shear flow in liquid crystals. We have reproduced the inhomogeneous
steady states predicted theoretically by Olmsted et al2, 3, for the three relevant geometries:
flow-aligning nematic-paranematic in the constant stress and the constant strain geome-
tries, and flow-aligning nematic-paranematic in the constant stress geometry. Most note-
ably, we observed shear banding in the common stress geometry: at certain densities, the
system separates into two phases, that respond with different strain rates to the same con-
stant applied stress. The more ordered phase has the higher strain rate, i. e., we observe
shear thinning upon ordering. Interestingly, this shear thinning occurs for both the flow-
aligning and the log-rolling geometry, i. e., regardless of whether the director in the more
ordered phase points along the flow or not. However, the effect seems to be a little stronger
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in the flow-aligning case, where the director and the velocity field are parallel. Further-
more, we have constructed a phase diagram of the coexistence region in the common stress
geometry by analyzing the discontinuities of the order parameter, the density, and the local
strain rate as a function of the total imposed strain.

In the present paper, we have presented only some preliminary results gathered in this
study. A more detailed analysis will be presented elsewhere10, along with the results for
the common strain geometry. In particular, we will study the biaxiality, the stress tensor,
the interface tension, and the capillary wave fluctuations mentioned in the introduction. In
future studies, attention shall also be given to transient phenomena such as the destruction
of the interfaces at high strain rates, the flow-alignment of the director when shear is ap-
plied to a system oriented in a direction different from the direction of the flow, and the
destruction of an interface that is set up in an unstable geometry, with the flow pointing
normal to the interface. Due to the short-lived nature of these time-dependent phenomena,
however, it is likely that it will not be possible to perform a quantitative analysis on the
same level as for the steady states.
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