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Abstract
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1 Introduction

Biological systems such as the immune system are characterized by a compli-
cated and complex interplay of biological processes. A crucial ingredient for
the immune system to work efficiently is the ability of antibodies to specifi-
cally recognize corresponding antigens (Alberts et al., 1994; Kleanthous, 2000).
In general molecular recognition can be viewed as the ability of a certain
biomolecule, also referred to as the recognition agent or recognition molecule

in this article, to interact preferentially with a particular target molecule al-
though a vast variety of different but structurally similar rival molecules are
present. Recognition processes are governed by the interplay of noncovalent
interactions of comparable strengths such as ionic binding, the van der Waals
interaction, the formation of hydrogen bonds and hydrophobicity. The non-
covalent interactions between the residues of the biomolecules lead to the
formation of a complex where the two biomolecules form a mutual interface
consisting of one or more patches on their surfaces. In addition long-range
electrostatic interactions are believed to pre-orientate the molecules so that
the probability of a contact of the interface patches upon a collision of the
molecules is increased (e.g. Janin, 2000; Wodak and Janin, 2003). The simul-
taneous presence of different types of interactions and the fact that the asso-
ciated energy scales do not separate leads to a complicated interplay among
them. Therefore a detailed description of recognition processes poses a diffi-
cult and involved problem. An understanding of the principles of molecular
recognition processes is not only important from a scientific point of view but
also for biotechnological and biomedical applications. The knowledge of these
principles is a necessary input for the design of synthetic heteropolymers with
molecular recognition ability so that they can interact with a biological envi-
ronment, i.e. biomolecules, cells and tissues, in a programmable way (see e.g.
the review by Peppas and Huang (2002)).

Modern computer facilities make it possible to study the molecular recognition
process between two molecules on a single molecule level (e.g. Halperin et al.,
2002; Brooijmans and Kuntz, 2003). However, it is not yet possible to incorpo-
rate the heterogeneity of the environment on a single-molecule level into such
studies. An important question that arises in the study of molecular recog-
nition processes is the phenomenon of specificity which is basically the fact
that recognizing biomolecules bind to each other although a huge amount of
competing rival molecules are present. In an aqueous environment noncovalent
bonds are typically of the order of 1-2 kcal/mole and are therefore only slightly
stronger than the thermal energy kBTroom ' 0.62 kcal/mole at physiological
conditions. The specificity of biomolecular recognition is thus only achieved
if a large number of functional groups of the two molecules to recognize each
other precisely match and thus a sufficient number of corresponding noncova-
lent bonds can be formed. This principle is often called complementarity in the
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literature (Pauling and Delbrück, 1940). Specificity is thus a genuinely cooper-
ative effect. The problem of specificity of molecular recognition processes can
be tackled using methods from statistical physics. Characteristic properties of
the heterogeneity of the biological environment, which cannot yet be taken
into account on a single molecule level, can be incorporated into the analysis
on a statistical basis. In addition statistical methods allow the identification
of the relevant degrees of freedom that influence the recognition processes. In
this context the study of idealized models can provide insight into the general
principles of specificity in recognition processes.

The investigation of molecular recognition using methods from statistical
physics can therefore serve as an example to illustrate model reduction for
biophysical processes. For the construction of such reduced, idealized models
the relevant degrees of freedom have to be identified. In an ideal situation this
is done by starting with the microscopic model that contains all information
about the system and then applying approximations that are suitable for the
particular context to be described. One then arrives at a reduced model which
contains only the relevant degrees of freedom which are sufficient to describe
the behaviour of the system. The approximations applied to the microscopic
model are usually justified by experimental observations. This approach is
nicely illustrated by the theory of magnetism. Starting from a complete micro-
scopic quantum mechanical description of a solid one arrives at the Heisenberg
model which contains only those degrees of freedom any more that are rele-
vant for the explanation of magnetic phenomena (e.g. Ashcroft and Mermin,
2001). The full quantum mechanical model of the solid contains for example
degrees of freedom which are related to the vibrations of atoms. However these
lattice vibrations, which are important for the propagation of sound, do not
influence the magnetic properties of the solid. Therefore they are neglected
during the reduction process. On the other hand experimental investigations
of magnetic solids have revealed the importance of local magnetic moments,
which are related to the spins of the atoms, for magnetic phenomena. There-
fore these degrees of freedom and their interactions are kept. In most biological
systems, however, a detailed microscopic model does not exist and therefore
one usually starts directly form experimental observations to identify the rel-
evant information for constructing a model to describe the behaviour of the
system.

In this article we review how coarse-grained models for molecular recognition
processes can be developed and summarize results we obtained by employ-
ing these models for the investigation of the principle mechanisms underlying
molecular recognition (Polotsky et al., 2004a,b; Bogner et al., 2004). In the
next section we will particularly demonstrate how these models are developed
starting from the findings of experimental investigations of recognition pro-
cesses. The models are then analyzed using methods from statistical physics.
In subsection 2.3 we briefly discuss other coarse-grained models for molecular
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recognition investigated in the literature. The last section 3 summarizes our
results and gives a fairly detailed perspective of possible extensions of the dis-
cussed models. Such extensions are motivated by questions arising currently
in biomolecular and biotechnological sciences.

2 Coarse-grained models for investigating molecular recognition

In recent years the structural properties of protein-protein complexes formed
during the recognition process have been clarified by many studies (Janin
and Chothia, 1990; Jones and Thornton, 1996; Lo Conte et al., 1999; Jones
and Thornton, 2000; Janin, 2000; Chakrabarti and Janin, 2002; Wodak and
Janin, 2003). Although different complexes show rather different properties
one fundamental ingredient in molecular recognition can be identified. The 20
amino acids appearing in natural proteins can be classified with respect to
their degree of hydrophobicity where two types of residues are distinguished,
namely polar and hydrophobic ones. The studies of the protein-protein com-
plexes revealed that the residues at the interface between the two proteins are
more hydrophobic than those of the rest of the protein surface which contains
in addition a considerable fraction of polar residues. From investigations of
the interior of proteins it is also known that it contains mostly hydrophobic
residues. Therefore, the hydrophobicity is expected to be the most dominant
ingredient for both protein-protein recognition and also protein folding which
leads to the tertiary structure of the protein.

In this section we present how idealized models for the investigation of molec-
ular recognition can be developed and investigated. Aspects concerning the
development of idealized models will be particularly stressed in subsection
2.1. In the proposed modelling approaches the structure of the recognition
molecule is described as a heteropolymer chain consisting of hydrophobic (H)
and polar (P) residues. The degree of hydrophobicity is therefore represented
in a coarse-grained way by only two distinct values. Analogously the interface
patch on the surface of the target molecule is modelled by a heterogeneous
surface pattern, where each residue is again either hydrophobic or polar. In
addition the target molecule is approximated by a flat surface structure, i.e.
no geometrical contributions related to the curvature of the interface are taken
into account at this point. In the two following subsections we consider models
of molecular recognition between two rigid proteins on the one hand (section
2.1) and a rigid and a flexible biomolecule on the other hand (section 2.2). Most
protein-protein recognition processes involve proteins that do not change their
conformations during the association process and thus remain rigid. Neverthe-
less there are notable examples where at least one participating biomolecule
is flexible and therefore may undergo a conformational change upon associa-
tion (e.g. Peppas and Huang, 2002; Wodak and Janin, 2003). An important
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example of recognition processes where one biomolecule is flexible is the recog-
nition of a flexible DNA molecule by a rigid protein (e.g. Chakraborty, 2001;
Bruinsma, 2002).

2.1 Recognition between two rigid biomolecules

In this subsection an idealized model is developed that can be used as a start-
ing point to analyze the principles that govern the recognition process of two
rigid proteins which do not change their conformation when they interact with
each other. In order to investigate specific adsorption, one has to analyze the
association of the target with different recognition molecules. The recogni-
tion agent, the biomolecule that recognizes the target, is therefore modelled
as a heteropolymer whose structure is not yet specified. It is in addition sur-
rounded by solvent molecules (S) which are also polar molecules. The tertiary
structure of the protein is determined by requiring the chain to be compactly
folded which means that the total number of solvent contacts of the residues
is minimized (Li et al., 1996). In this sense the recognition agent is also a rigid
molecule. A finite number of possible compact and not identical structures is
presented to the target molecule thereby mimicking the heterogeneity of the
environment encountered by the target molecule in a biological situation. As
different recognition agents are considered one has to take the energy contri-
butions from the interior of the recognizing protein into account. Apart from
the internal energy the interaction energy at the interface between the proteins
and the energy arising from the contacts with solvent molecules contribute.

In a first approximation we model the various contributions to the total energy
in the following way. For simplicity the recognizing molecule is considered on
a regular lattice so that each lattice site is occupied by a residue. Although
various lattices will serve as possible simplifications of the problem here we
consider only square lattices for the discussion of the model. The actual cal-
culations are then carried out on either two-dimensional square lattices or on
three-dimensional cubic lattices. The recognition molecule is surrounded by
solvent molecules occupying sites at the boarder of the employed lattice and
is in contact with the target protein also presented on a lattice whose sites
are occupied by H- and P-residues. The interactions can then be expressed in
terms of a spin model with the total energy given by

Etot =
∑

〈i,j〉

∑

〈α,β〉

τα
i τβ

j Eα,β. (1)

The variables τα
i describe the distribution of residues on the lattice and there-

fore the structure of the protein that is to recognize the target biomolecule.
The parameters Eα,β model the interactions between two residues of type α
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and β, where α and β are either of type polar (P), hydrophobic (H) or sol-
vent (S). The first sum runs over neighbouring sites i and j on the lattice
so that only residues close to each other can contribute to the total energy,
the second sum is a sum over the different types of residues and molecules,
i.e. α, β ∈ {H, P, S}. Note the sum over lattice sites contains the contacts of
the residues with the solvent molecules and with the residues of the target
biomolecule on the interface. Therefore this sum comprises the energy con-
tributions arising from both intermolecular contacts within the recognition
agent and intramolecular contacts at the interface with surface residues of
the target and with solvent molecules. The spin variables τα

i describe whether
site i is occupied by a residue/molecule of type α. Thus τα

i = 1 if site i is
occupied by a residue/molecule of type α and zero otherwise. Therefore the
variables τα

i model the structure of the biomolecules and determine the degree
of chemical heterogeneity in the recognition molecule. The parameters Eα,β

specify the energy contribution due to a contact between a residue/molecule
of type α and a residue/molecule of type β. Contacts between residues of the
same type, i.e. HH or PP contacts, lead to favourable energy contributions.
Contrarily, contacts between residues of different types (i.e. HP contacts) are
accompanied by unfavourable energy contributions. The four types of contacts
are schematically illustrated in figure 1. In addition contacts between solvent

Fig. 1. A compactly folded chain attached to a target molecule and surrounded by
solvent molecules (dark blue area) at the other three sides. The different types of
contacts that occur are graphically illustrated.

molecules indicated by the outer dark blue area in figure 1 and hydrophobic
residues also lead to an unfavourable energy, whereas contacts with polar ones
to a favourable energy contribution. The overall energetics of the model can
then be summarized by the relations EHH ≈ EPP ≈ EPS < EHP ≈ EHS, where
the particular values of the interaction parameters still have to be specified.
Regarding the energetic preference based on the different energy contributions
the hydrophobic residues tend to be buried away from polar ones and the po-
lar solvent molecules. This models the hydrophobic effect that is assumed to
be dominant in protein-protein recognition.

A fixed sequence of residues of the recognition molecule leads to a variety of
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different conformations i.e. compactly folded structures of this molecule. Fol-
lowing the definition of the energy model in (1), the energy for each conforma-
tion can be computed, for both situations, away from the structured surface
of the target molecule and attached to the surface. In both cases an energy
spectrum is obtained including the computed energy values for the possible
conformations. The adsorption energy is defined for a particular recognition
molecule and a selected target molecule as the energy difference between the
ground state energy of the polymer free in the solvent E0,free and the ground
state energy of the adsorbed polymer E0,ads, denoted as

Eads = E0,ads − E0,free. (2)

In the framework of the proposed model (1), the process of adsorption is
studied with respect to a varying Eads, i.e. a stronger adsorption and thus the
mutual recognition of two biomolecules corresponds to a larger Eads.

Regarding a given sequence of residues different conformations, i.e. compactly
folded structures, exist. For all of these conformations and for all of the pos-
sible surface patterns at the interface patch of the target molecule one can
now compute the associated energy spectra. In case a unique surface pattern
with highest adsorption energy exists the chosen sequence is called selective

with respect to this unique surface pattern. This in turn means that the two
agents, the compactly folded recognition molecule and the target presenting
the surface structure at the interface, recognize each other. Note that the pat-
tern recognized as specific may only be part of the whole contact interface
between the biomolecules. In general the complete recognition interface can
be far more complex structured. However, in our modelling we have assumed
a limited size of possible interaction regions located within a larger structure.
This is schematically illustrated in figure 2.

Fig. 2. Example of a surface pattern as recognized by a selective molecule. The
pattern may only be one part of a much more complex target molecule.

One of the questions arising in the context of specific adsorption is whether
the model allows to detect general rules underlying the recognition process.
To accomplish this task statistical features from a set of sequences each selec-
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tive for a particular surface pattern can be computed (Bogner et al., 2004). In
this approach the sequence of residues is treated as a random vector which is
then Fourier transformed. Thus, if common features within a set of sequences
do exist, the Fourier components will show a strong correlation. Within a
statistical analysis such a correlation manifests in the covariance matrix. Di-
agonalizing this matrix yields the eigenvalues which are a measure for the
squared variances of these components. Low variances correspond to charac-
teristic components regarding the set of residue sequences. Figure 3 shows
the eigenvector corresponding to the lowest eigenvalue for six different sur-
face patterns identified as selective for a presented recognition molecule. The
shown eigenvectors are calculated for a three-dimensional 3 × 3 × 3 system.
As a result we obtain that the highest frequency components are identified

Fig. 3. Coordinates in Fourier space of the smallest variance eigenvector for six
different surface patterns involved in selective recognition of different recognition
molecules for the 3 × 3 × 3 system. The frequency components are ordered from
highest frequency (left) to lowest frequency (right), the latter corresponding to the
highest indexing number in the figure.

as those with the largest contribution and accordingly dominate the recogni-
tion process. Therefore, a universal feature that governs molecular recognition
within our model is identified as the local, small-scale structure of the modelled
biomolecules. This general behaviour is found in both (small) two-dimensional
and three-dimensional systems (Bogner et al., 2004). In addition, for some ex-
amined systems also the lowest frequency components, shown in figure 3 by the
highest indexing number, add a major contribution. According to this obser-
vation the mean hydrophobicity in combination with the small-scale structure
governs a specific recognition process.

2.2 Recognition between a flexible and a rigid biomolecule

As already mentioned above some recognition processes involve at least one
flexible biomolecule so that conformational changes can occur. An important
example is protein-DNA recognition. Recognition in this context is the specific
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adsorption of the flexible biomolecule onto the chemically patterned surface
structure of the rigid biomolecule (Sarai and Kono, 2005). An investigation
of such processes will be an essential contribution for understanding cell bi-
ology and functioning. Regarding the fixed structure of the target molecule,
this is then fully characterized by the chemical heterogeneity on its surface.
However, to explore the contribution from chemical heterogeneity in full, the
flexible recognition agents need to be enabled to adjust their conformations
such that they predominantly attach to the most attractive surface sites. This
is accomplished by relaxing the constraint of a compactly folded recognition
agent when computing the energy of a conformation.

Recent simulation studies with respect to flexible recognition molecules at
solid planar surfaces suggest a strong relationship between strongly correlated
structures in the flexible biomolecule and the rigid surfaces (e.g. summarized
by Chakraborty, 2001). In addition it was found that, upon increasing the
strength of the interactions, the adsorption transition of heteropolymers on
heterogeneous surfaces is followed by a second sharp transition, where the
recognizing molecules freeze into conformations that match the surface pat-
terns. In nature such a process where adsorption is followed by a freezing
transition might be involved in the protein-DNA recognition, where the pro-
tein slides along the DNA molecule before finding its specific docking site (e.g.
Bruinsma, 2002). However, regarding the immune system as another biological
system based on recognition principles, i.e. the interaction between antigens
and antibodies, it is not only important that a molecule recognizes a particular
surface, since it is crucial that it does not adsorb to other molecular structures
(Janeway et al., 1999). As a first approach to investigate such mechanisms the
importance of cluster size matching between the surface pattern and the flexi-
ble recognition molecule can be investigated. To accomplish this task, one has
to calculate the shift of the adsorption transition as a function of correlation
lengths on the two interacting partners. Although simulations investigating
the matching of cluster sizes were performed for particularly selected hetero-
geneous patterns, these do not allow to examine the dependence of recognition
processes on the degree of heterogeneity (Semler and Genzer, 2003).

Again we use a coarse-grained model where coarse-graining is applied again on
two levels, namely the description of the structure of the involved biomolecules
and the interaction energy between them. Here we resort to a well known model
from polymer physics to describe the flexible biomolecule that can undergo
conformational changes during the recognition process as the constraint of
being compactly folded is dropped (e.g. Doi and Edwards, 1986). The molecule
is a chain of length N measured in residue units, each of equal size a. The
conformation of the flexible biomolecule in space is specified by the vector
r(n) = {x(n), z(n)} with n ∈ [0, N ] parameterizing the curve representing
the chain-like heteropolymer. In principle this vector can have continuous
or discrete entries so that one works again on a lattice as has been done in
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subsection 2.1. The type of the residue at position n in the chain is specified by
the variable ξ(n) which can be either continuous or discrete and is again related
to its degree of hydrophobicity. The position of the residues on the surface to
which the flexible polymer can attach is labelled by the two-dimensional vector
x, the type of the residue is specified by the variable σ(x). The strength and
the sign of the interaction between a monomer in the recognition molecule
and a surface site is then determined by the product ξ(n)σ(x). In particular,
a positive contribution defines attraction and a negative one defines repulsion.

In what follows we formulate the model in terms of continuous variables. The
sequence of monomers ξ(n) for the flexible biomolecule is then assumed to be
Gaussian distributed with mean value ξ0 = 〈ξ(n)〉. The effective energy of the
system consisting of the flexible molecule and the surface of the target is then
given by

Etot =
3

2βa2

N
∫

0

dn

(

∂r

∂n

)2

+

N
∫

0

dn V [z(n)] · ξ(n) · σ [x(n)] . (3)

The first term accounts for the flexibility of the biomolecule (e.g. Doi and
Edwards, 1986). The parameter β is inverse proportional to the temperature
T = 1/(kBβ) where kB is the Boltzmann constant. The second term represents
the energy contribution due to the interaction of the residues of the flexible
biomolecule chain and the residues of the surface pattern. This contribution is
basically determined by the residue-surface potential V which is taken to be
attractive and short-range so that only residues that are in contact with each
other contribute to the energy. The product ξσ models the hydrophobic effect
so that hydrophobic residues (associated with negative values of ξ and σ) are
buried away from polar ones (associated with positive values of ξ and σ).

Using this model for the energy of the two interacting biomolecules we in-
vestigated the influence of the correlation lengths of the residues of the two
interacting biomolecules. The correlation function for the residues on the flex-
ible recognition molecule (R) chain is taken to be

c(n1, n2) = 〈(ξ(n1) − ξ0)(ξ(n2) − ξ0)〉 = ∆2
R exp (−ΓR|n1 − n2|) . (4)

The parameter ΓR corresponds to the inverse contour correlation length on
the flexible biomolecule and ∆R gives the variance or correlation strength of
the single-residue distribution. Note that specifying the correlation function
and the mean ξ0 then determines the Gaussian distribution function. Similarly
the corresponding correlation function for the residues on the surface of the
target molecule (T) is characterized by the parameters ∆T and ΓT. Following
the introduced notation, the family of parameters ∆ and Γ are a measure for
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the chemical heterogeneity of the interacting partners. A possible experimen-
tal realization of predefined heterogeneity is referred to as colouring. Here a
protein-like sequence is generated from an originally homogeneous chain con-
taining only hydrophobic monomer units coloured with hydrophilic residues
(Semler and Genzer, 2006).

The strength ∆ and correlation length 1/Γ are then employed as parameters to
describe the matching of the correlations of the flexible recognition molecule
(R) and of the surface pattern of the target molecule (T). Within a first
approximation it is further assumed that the chain and surface distributions
should be neutral on average. i.e. the corresponding mean values are taken as
〈ξ〉 = 〈σ〉 = 0. Figure 4 schematically illustrates the extended model allowing
for flexible biomolecular conformations of one of the two involved molecules.

Fig. 4. Schematic illustration of the adsorption of a polymer chain onto a chemically
structured surface. The molecule is free to adopted the most appropriate conforma-
tion.

Employing the model (3) it is possible to compute the adsorption transition
as

∆2
T · ∆2

R

ΓT +
√

6ΓR

= constant (5)

specifying the region of adsorption and desorption in the parameter space of
variances ∆ and inverse correlation lengths Γ (Polotsky et al., 2004a,b). Tuning
selected parameters the equation (5) therefore describes the adjustment of the
remaining parameters at the transition point. In addition, the term in (5) dom-
inates the computation of the mean affinity between residues in the chain and
sites of the target when compared with a homogeneous monomer distribution
(Polotsky et al., 2004b). Therefore it is possible to deduce some dominating
features governing the interplay between the employed cluster sizes: Incorpo-
ration of chemical heterogeneity at constant average load favours adsorption.
In particular, utilizing correlation functions for describing the characteristics
of the heterogeneity, it is found that increasing the correlation length and
strength of the correlations the adsorption transition is shifted towards lower
affinities.
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2.3 Other coarse-grained models for molecular recognition

In this subsection we briefly discuss other coarse-grained approaches, which are
based on concepts used for the statistical description of the physics of glassy
systems, to the investigation of statistical properties of molecular recognition
processes.

In the approach proposed by Janin (1996) the density of states M(E) for the
binding modes between two rigid proteins is considered as a function of the
binding energy E. Apart from the native complex, the lowest energy bind-
ing state with E = 0, there exists a variety of non-native, energetically less
favourable states. These alternative binding modes are, for example, related
to different relative orientations of the two proteins. The specificity of molec-
ular recognition is basically related in this approach to the existence of an
energy gap G between the energy of the native state and the one of the lowest
lying non-native states. The density of states of the protein-protein complex
is calculated numerically within a docking analysis (for details, in particular
concerning the geometric representation of the proteins, see e. g. (Bernauer et
al., 2005)), where the binding energy is assumed in a coarse-grained way to be
proportional to the area of the interface between the two proteins, an assump-
tion that seems to be well justified (e.g. Janin, 2000; Wodak and Janin, 2003).
It is found that the low energy part of the numerically evaluated density of
states can be well described by the density of states of the random energy
model, which is one of the simplest models to describe the behaviour of glassy
systems (e.g. Parisi, 2003). This observation allows the definition of two char-
acteristic temperatures. The so-called specificity transition temperature TS is
given by the inverse slope of the tangent on the entropy S(E) = ln M(E)
that passes through the energy E = 0 of the native state. At this temperature
the system is found to be in the native binding mode with probability 1/2
and below TS the native binding mode becomes abundant. The slope of the
tangent on the entropy curve at the lowest lying non-native states at E = G
defines the so-called glass transition temperature Tg. For temperatures be-
low Tg only non-native states whose energy is close to E = G can compete
with the native state any more and the system can be trapped in a low-lying
non-native state hinting at a glassy phase of the system. Within the random
energy model approximation, i. e. a Gaussian density of states, the specificity
tarnsition temperature TS is determined by the ratio of the energy gap G and
the width ∆E of the density of states. In this approach the recognition of two
molecules A and B is described with respect to the spectrum of their associa-
tion modes A-B irrespective of a possible presence of rival molecules C which
might compete to form complexes A-C or B-C. In (Janin, 1996), however, it
has been argued how rival molecules can be incorporated into this approach.

Wang and Verkhivker (2003) proposed an approach that is in spirit similar
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to the one by Janin (1996), however, formulated on a more microscopic level.
They also consider the binding modes of two rigid proteins. For a set of residues
in multibody contact across the interface between the two proteins they as-
sign an energy contribution ε which is assumed to be a random variable due
to the sequence and interaction heterogeneity on the surface of the proteins.
Again they consider the native binding mode and the non-native ones. They
introduce in addition an overlap parameter Q which measures how close a
non-native mode a is to the native one n. The overlap Q basically counts the
number of residue contacts in the binding state a that also appear in the na-
tive mode n. Under certain assumptions (in particular a Gaussian distributed
random variable ε and a restriction to pair contacts between residues) they cal-
culate the average number of non-native binding states a that have an energy
E and a fixed overlap Q between a and the native mode n. It turns out that
for each value of Q the system can be modelled independently by a random
energy model. For each Q they therefore get a glass transition temperature
Tg below which the system is trapped in a low energy state of the subset of
states characterised by Q. From the free energy of their system Wang and
Verkhivker obtain the phase diagram of the binding between the two proteins.
They find three phases, namely a native and non-native binding phase and
a glass phase already hinted at in the Janin approach. Wang and Verkhivker
(2003) then relate the specificity of the biomolecular binding to the fact that
the binding temperature (specificity temperature in the nomenclature of Janin
(1996)) should by higher that the glass temperature to avoid a nondiscrimi-
nation of the native binding mode with states trapped in the glass phase. As
in the work of Janin the specificity then turns out to be affected by the ratio
of the gap between the native binding state and the lowest non-native mode
and the width of the density of states.

3 Perspectives and summary

Before summarizing the results let us discuss how the present approach for
investigating molecular recognition can be extended to incorporate further
ingredients. Here we focus on extensions of the model for the molecular recog-
nition of two rigid proteins.

In the studies of protein-protein complexes the structural properties of the so-
called recognition site, the contact interface between the biomolecules, have
been addressed extensively. (Janin and Chothia, 1990; Jones and Thornton,
1996; Lo Conte et al., 1999; Chakrabarti and Janin, 2002). In most associa-
tions of two proteins the molecules are basically rigid although minor rear-
rangements of the amino acid side chains do occur. This observation of minor
rearrangements of the amino acid side chains can be incorporated into the
idealized model for rigid protein recognition studied above in section 2.1. At

13



the interface between the two proteins the residues have been modelled to be
in contact and therefore contribute to the energy of the system. In order to
incorporate the minor rearrangements of the side chains of the residues the
following modified energy contribution of the interactions between residues at
the interface is proposed (Behringer et al., 2006):

Einterface =
∑

k

∑

〈α,β〉

τα
T,kτ

β
R,kEα,β(σk). (6)

The first sum takes into account all residues k of the interface and the variables
τT,k and τR,k characterize the type of the residues of the target protein (T)
and the recognition agent (R), respectively, at the interface site k. Note that
apart form the interface energy Einterface the total energy then comprises the
further contributions from the residue interactions in the interior of the recog-
nizing protein and the energy contributions from the contacts of the residues
with solvent molecules. These contributions are modelled as in section 2.1.
The additional variable σk in the general interface energy term (6) can take
on different discrete values and takes the quality of the contact of the two
residues at position k into account. On a very coarse-grained level one may,
for example, distinguish only between good and bad contacts. In the case of
a good contact the interaction between the residues τT,k and τR,k leads to a
large favourable energy contribution whereas for a bad contact one has only a
small contribution. A good contact may imply for example that the distance
between the two residues is small, a steric hindrance on the other hand may
result in a large distance and consequently one has a bad contact. For residues
with a polar moment a good contact may be established if the moments are
appropriately aligned to each other. The variable σ therefore models effects
that are related to energy contributions stemming form the minor rearrange-
ments of the side-chains of the amino acids when a complex is formed. This
extension taking more details of the interface into account then allows to study
the complementarity of the proteins at the interface from two perspectives.
On the one hand one can ask whether hydrophobic residues are indeed buried
away from polar ones at the interface leading to a complementarity related to
the composition of the proteins at the interface. On the other hand one can
now consider the complementarity of the shape of the proteins at the inter-
face. Again one can now study the influence of the small-scale structure of the
biomolecules on molecular recognition in this extended model approach.

The specificity of molecular recognition is closely related to the heterogeneity
of the environment of the two recognizing molecules which has the consequence
that different molecules compete for binding with the target molecule. In the
approach considered above the heterogeneity has been mimicked by allowing
different structures of the recognition agent where each possible structure was
taken into account with equal probability. In reality however the different
molecules will appear with different frequencies in the plasma of a cell, for
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example. These frequencies have been optimized by natural evolution over a
long period of time.

In the model system for molecular recognition this can be incorporated by
introducing a first design or learn step before the actual analysis of the associ-
ation is carried out. In this preceding design step the target molecule is fixed
and the recognition agents are designed so that an ensemble of recognition
agents is created. In this ensemble those biomolecules that are well optimized
with respect to the target in the sense that their complementarity with the
target is large appear with an increased probability. Let τT denote the struc-
ture of the fixed target molecule and τR the various possible structures of the
recognizing molecule. Then this design step leads to a probability distribution
P (τR|τT) for the structures τR given the fixed structure τT of the target. The
design has to be performed according to some specific model that mimics fea-
tures of natural evolution processes. To illustrate this step a bit further in a
rather unbiological context let us assume that the design is just done by ther-
mal fluctuations. Then the structure τR has a high probability to be present
in the ensemble if it leads to a favourable interaction energy with the fixed
target τT, a structure which has an unfavourable interaction energy with the
target has a low probability. The distribution P (τR|τT) is then basically the
Boltzmann distribution P (τR|τT) ∼ exp(−βERT) with ERT being the interac-
tion energy between the target and the recognizing molecule. In general the
probability distribution P (τR|τT) will depend on further parameters which de-
scribe the conditions under which this first learn step has been carried out. In
this way statistical characteristics of biomolecules that have emerged during
evolution can be incorporated into the analysis of molecular recognition.

In conclusion, we presented idealized model systems which allow the study
of the principle mechanisms governing molecular recognition processes from
a statistical point of view. We considered in detail how an idealized model
for the recognition of two rigid biomolecules can be developed starting from
the basic findings of experimental investigations of protein-protein complexes.
The analysis of the model showed that the local correlations on the surface
of the biomolecules seem to be an important feature in molecular recognition
processes. In addition we considered a modified model where one of the two
molecules participating in the recognition process is allowed to be flexible.
It can therefore adjust its conformation with respect to a rigid surface to
achieve a high complementarity with the surface pattern during the adsorption
process. In this context we studied how the matching of correlation lengths
of the residue distribution on the two molecules affect the adsorption process
and therefore influence the recognition procedure. However, the number of
favourable contacts will be balanced by the loop entropy of the flexible chain.
In order to calculate conformational characteristics of the adsorbed chain we
aim to compute the averaged size of loops and adsorbed segments (Polotsky
et al., 2006).
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