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Abstract

This paper addresses the complexity of computing the smallest-radius infinite cylinder that
encloses an input set of n points in 3-space. We show that the problem can be solved in time
O(n4 logO(1) n) in an algebraic complexity model. We also achieve a time of O(n4L ·µ(L)) in a bit
complexity model where L is the maximum bit size of input numbers and µ(L) is the complexity
of multiplying two L bit integers.

These and several other results highlight a general linearization technique which transforms
non-linear problems into some higher dimensional but linear problems. The technique is reminis-
cent of the use of Plücker coordinates, and is used here in conjunction with Megiddo’s parametric
searching.

We further report on experimental work comparing the practicality of an exact with that of a
numerical strategy.

1 Introduction

1.1 Motivation

A major topic of geometric optimization is to approximate point sets by simple geometric figures.
This includes extensively studied planar problems such as smallest enclosing circles, the minimum
width annulus, and the minimum width slab. In higher dimensions, there are few non-trivial com-
plexity results for geometric figures beyond hyperplanes or spheres. In this paper, we consider the
following:

Smallest Cylinder Problem (P1): Let I be a given set of n points in 3-space. Find
a line ` which minimizes max{ d(`, c) : c ∈ I }.

Here, d(`, c) denotes the minimum Euclidean distance between c and a point of `. Since cylinders
constitute an important primitive shape in computer-aided design and manufacturing, this problem
has many applications. We merely give two examples:

The first example is from assembly planning. Assume we want to “fit” a given polyhedral object
into a cylindrical hole. Obviously, this problem can be solved by computing the smallest enclosing
cylinder of the polyhedron. In practical situations, the number n of points defining the polyhedron
may be large, but the computation of a suboptimal solution can usually be tolerated.

The second example is from an area of importance to modern high precision engineering, dimen-
sional tolerancing and metrology (see [SV, Ya]). Here the task is, given a physical object, to verify
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its conformance to tolerance specifications by taking probes of its surface. The cylinder is one of the
basic objects addressed by the ASME tolerancing standards [Asme]. In industry, highly specialized,
expensive equipment (called Coordinate Measurement Machine or CMM) is used to perform these
probes automatically. In contrast to the previous application, n is small but high numerical accuracy
is important [Ya].

1.2 Contributions

We summarize four areas of contribution.
(I) We design efficient algorithms for the smallest cylinder problem:

Theorem 1
The problem (P1) can be solved in time:
(i) O(n4 logO(1) n) in an algebraic model; and
(ii) O(Lµ(L)n4) in a bit model.

Here, µ(L) = O(L logL log logL) denotes the complexity of multiplying two L-bit integers. The
algebraic and bit complexity models are described below.

(II) We design approximation algorithms for the smallest cylinder problem. Such results may be
more useful for certain applications. A cylinder whose radius is within ε of the minimum radius is
called an ε-approximate smallest cylinder. We obtain complexity trade-offs between n and ε:

Theorem 2
In an algebraic model of computing, an ε-approximate solution of (P1) can be found in times (re-
spectively):

O(nε−2 log ε−1), O(n3ε−1 log ε−1), O(n4 log ε−1).

(III) We highlight a linearization technique for geometric optimization problems. The above
result uses Megiddo’s parametric search and a new parallel convex hull algorithm in [AGR]. But it
also requires an application of the linearization technique, which we believe has wider applicability.

The heart of both approximation and parametric search algorithms is a decision scheme for a fixed
optimization parameter. To obtain efficient decision algorithms, it is often possible to exploit geomet-
ric duality transformations, including inversion (as in [FSS]) and Plücker coordinates (as in [ST]).
In this paper, we extend these principles to a more general framework, here called linearization. We
give this an abstract formulation. Let P (x,y) be a polynomial in the real variables x = (x1, . . . , x`)
and y = (y1, . . . , ym).

Abstract Decision Problem (D): Given a set I ⊆ Rm of n points, decide if there
exists a point p ∈ R` such that for all c ∈ I, P (p, c) ≤ 0.

We say P (x,y) has an order k linearization if there exist 2k + 1 polynomials, Xi = Xi(x)
(i = 1, . . . , k) and Yi = Yi(y) (for i = 0, . . . , k), such that

P (x,y) = Y0 +
k∑
i=1

XiYi.

Theorem 3
(i) If P (x,y) has an order k linearization, the decision problem (D) can be solved in time O(nbk/2c)
in the algebraic model.
(ii) In the bit model, if each input coordinate has L bits, the problem (D) can be solved in time
O(µ(L)nbk/2c).

2



In our application, we need to transform our original problem into some suitable versions of
Problem (D) and give efficient linearizations.

(IV) Finally, in view of considerable interest in implementation of these algorithms [Ya], we report
on some experimental work using a heuristic approach – a “local” numerical optimization technique,
implemented in C. Our heuristic seems to be quite effective, as verified against exact answers. The
exact answers come from a maple implementation of a simple algorithm to enumerate all cylinders
with fixed radius through 4 of the given points. It should be noted that the size of our input data
(see section 4) lies on the edge of what could reasonably be handled by maple.

1.3 Subproblems

In order to get approximation algorithms, we may consider restricted versions of (P1) with fewer
degrees of freedom, and discretize the remaining parameters by a grid, with step-size depending on
ε. Suppose we eliminate the rotational degrees of freedom and ask for a cylinder with fixed axis
direction. This problem reduces to the well-known smallest enclosing circle problem in the plane
– which is solvable in linear time. An intrinsically different situation arises when we eliminate the
translational degrees of freedom:

Smallest Anchored Cylinder Problem (P2): Let I be a given set of n points in
3-space. Find a line ` through the origin which minimizes max{ d(`, c) : c ∈ I }.

As this problem is non-convex (section 2.3), usual approaches to obtain subquadratic solutions
fail. But it is noteworthy that two interesting subcases can be solved in subquadratic time: when
the input points are relatively far from the origin, and when we ask for an optimal location of a ray
instead of a line.

1.4 Related Work

Problem (P1) belongs to a class of problems that have been considered from a complexity–theoretic
viewpoint in [GK]. Although problem (P1) is routinely solved in engineering applications using
numerical optimization techniques, few complexity theoretic results have been published. A more
general version of this problem has been shown to be polynomial time solvable by Faigle, Kern
and Streng [FKS], and studied from the viewpoint of nonlinear optimization theory by Streng [S].
Concrete geometrical properties have first been investigated in [Pa], with focus on the decision
problem to determine if there exists a cylinder with radius r = 1 (a unit cylinder) which encloses the
input points.

Proposition 1 ([Pa])
(a) If there exists a unit cylinder that encloses all input points, then there also exists a unit enclosing
cylinder which touches 4 of the input points, or whose axis is parallel to an edge of the convex hull
of I.
(b) There is only a finite number of cylinders with radius 1 that touch 4 non-collinear points in
3-space.

With these (geometrically non-trivial) results, the decision problem for fixed radius can be solved
by enumerating all cylinders through choices of 4 points, and by checking if one of these encloses the
input points. This algorithm has complexity O(n5). It is not hard to see that the optimization prob-
lem can be solved in time O(n5 logn) by binary search. (It is also possible to use a straightforward
application of parametric search.)
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The linearization technique appears to have been used first by Yao and Yao [YY]. More recently,
Agarwal and Matoušek [AM] use linearization in the context of range searching with semialgebraic
sets. They also gave a simple procedure for finding the optimal linearization for a given polynomial.

The maximin counterpart of (P2) has nice applications in robotics. It has been solved by para-
metric search in time O(n log4 n) [Fo]. The variant of (P2) where we ask for an enclosing silo instead
of a cylinder was solved in the same paper in time O(n log3 n log logn).

Recently, by posing the problem as a problem of finding line transversals of balls, Agarwal et
al. [AAS] have established a bound of O(n3+ε) on the combinatorial complexity of the set of cylinders
of a given radius enclosing a set of n points, as well as an Ω(n3) lower bound. Here ε is any positive
constant. They give an O(n3+ε) time algorithm for solving (P1) and a slight generalization thereof,
as well as an approximation algorithm for finding a cylinder whose radius is at most 1 + δ times the
optimum in time O(n/δ2). These algorithms operate in an algebraic model of computation, and the
first algorithm requires the use of parametric search.

1.5 Parametric Search vs. Exact Approximation

Parametric search is an ingenious technique to design optimization algorithms in the algebraic model
of computing. Introduced in [Me], it has been applied to numerous optimization problems.

But while low–dimensional problems like (P2) often possess simple algebraic characterizations,
the algebraic structure of problem (P1) is much more involved. Its solution requires the calculation
of roots of polynomials with high degree. In the algebraic model, this calculation is regarded as a
constant time operation. Even worse, the results of such a computation may be used in a parametric
search strategy as coefficients of a polynomial in a subsequent step, potentially increasing substan-
cially the bit complexity of the numbers involved. This is a major reason to consider bit-complexity.

On the other hand, the decision scheme that underlies a parametric search solution immediately
provides an approximation algorithm that guarantees an error of ε (with our assumptions, absolute
error) by adding just a factor of log ε−1 to the running time. Finally, in a bit model, this approxima-
tion can be made exact (in the sense of providing a combinatorial solution) by exploiting techniques
(esp., root bounds) from the theory of exact computation.

While parametric search provides a clean dependency of running time on the number n of input
points, the exact approach is more suitable if accuracy is the main goal to achieve. This gets
increasingly important as the algebraic source of complexity comes into play.

1.6 Algebraic and Bit Complexity Models

Most geometric algorithms are developed within one of two distinct computational frameworks. In
the algebraic framework, the complexity of an algorithm is measured by the number of algebraic
operations on real-valued variables, assuming exact computations. The input size corresponds to the
number n of input values. In the bit framework, the complexity is measured by the number of bitwise
boolean operations on binary strings. The input generally consists of integers, and the parameter n
is supplemented by an additional parameter L that bounds the maximal bit-size of any input value.

While the size of the input is measured differently in the algebraic and in the bit model, the
output can often be treated in a uniform way by asking for a combinatorial solution to the problem.
In the case of (P1), we may assume the required output to be a list of those input points that specify
the optimal cylinder(s).

Another way to define the output of optimization algorithms is to consider the approximation
problem, in our case to find an enclosing cylinder with radius r such that |r−r∗| ≤ ε, where r∗ denotes
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the sought optimum and ε the required absolute error. Traditionally, approximation algorithms are
treated in an algebraic model of computing. However, we note that the bit model is also a reasonable
choice, especially since the size of input numbers can have influence on the approximation error ε.

One of our basic assumptions is that – in the algebraic model – each input point c ∈ I is enclosed
in the unit sphere (i.e., ‖c‖ < 1), and that – in the bit model – the coordinates of each c ∈ I are
given as homogeneous rational numbers of bit-size L.

1.7 Overview

Section 2 contains mathematical preliminaries, and serves to clarify basic properties of the problem.
In particular, subsection 2.1 describes the technical framework that underlies our maple implemen-
tation, and subsection 2.2 treats major aspects of the bit-complexity analysis which is necessary to
make ε-approximation algorithms exact.

Section 3 is devoted to our optimization technique, and to the proofs of theorems 2, 1 and 3. We
also present results for the restricted problem (P2) in this section.

Experimental results and a discussion conclude the paper in sections 4 and 5.

2 Preliminaries

2.1 Algebraic Formulation

A cylinder C in 3-space is specified by 5 real parameters, its axis line ` and its radius r. We follow
the approach suggested by Proposition 1, and first specify the set C(c1, . . . , c4) of cylinders that
touch 4 given points c1, . . . , c4 ∈ I.

By translation of the coordinate system, we can assume c1 = (0, 0, 0). Let u ∈ R3 be any direction
vector of `. Let E be the plane passing through the origin and orthogonal to u, and let c∗1, . . . , c

∗
4 be

the orthogonal projection of the input points c1, . . . , c4 onto E. Then the cylinder C passes through
c1, . . . , c4 if and only if c∗1, . . . , c

∗
4 are cocircular.

The first problem that we face in the algebraic computation of solutions is to find a suitable
parametrization for the direction vector u. We will treat the case when u is not parallel to the plane
containing c2, c3, c4. (Otherwise, we have a simpler subproblem.) We may likewise assume that
c1, . . . , c4 do not lie in a plane. Let

u = xc2 + yc3 + zc4.

Note that we may choose u to lie in the plane of c2, c3, c4, by setting z = 1− x− y. The parameters
x, y, z are also called the barycentric coordinates of u with respect to c2, c3, c4.

Now, let R1(x, y, z) be the squared radius of the circumcircle of c∗1, c
∗
2, c
∗
3 in E, and R2(x, y, z)

the squared radius of the circumcircle of c∗1, c
∗
3, c
∗
4. Then the set C(c1, . . . , c4) can be interpreted as

a 2-dimensional surface in 3-space, defined by R1(x, y, z) = R2(x, y, z).

Lemma 1 The condition R1(x, y, z) = R2(x, y, z) is equivalent to P (x, y, z) = 0, with

P (x, y, z) = ∆1,2,4(xz2 + x2z)
+ ∆1,3,4(yz2 + y2z)
+ ∆1,2,3(xy2 + x2y)
+ (∆1,2,4 + ∆1,3,4 + ∆1,2,3 −∆2,3,4)(xyz),

where ∆i,j,k is equal (respectively, proportional) to the squared area of the triangle with vertices
ci, cj , ck.

5



Proof. Let u = xc2 + yc3 + zc4 be the direction of projection and v and w two vectors which
supplement u

|u| to an orthonormal system. The four projected points c∗i are cocircular iff

det


1 vT c1 wT c1 (vT c1)2 + (wT c1)2

1 vT c2 wT c2 (vT c2)2 + (wT c2)2

1 vT c3 wT c3 (vT c3)2 + (wT c3)2

1 vT c4 wT c4 (vT c4)2 + (wT c4)2

 = 0

Since cT1 = (0, 0, 0) this is equivalent to

det


vT c2 wT c2 c∗2

2

vT c3 wT c3 c∗3
2

vT c4 wT c4 c∗4
2

 = 0

where c∗i
2 = (vT ci)2 + (wT ci)2 = c2i −

(uT ci)
2

u2 . Using v × w = u
|u| the expansion of this determinant

yields
c∗2

2uT (c3 × c4) + c∗3
2uT (c4 × c2) + c∗4

2uT (c2 × c3) = 0

Substituting u = xc2 + yc3 + zc4 we get (provided that det(c2, c3, c4) 6= 0):

xc∗2
2 + yc∗3

2 + zc∗4
2 = 0

Multiplying this equation with u2 yields

(c2 × c3)2(xy2 + yx2) + (c3 × c4)2(yz2 + zy2) + (c4 × c2)2(zx2 + xz2)
− 2((c2 × c3)T (c4 × c2) + (c2 × c3)T (c3 × c4) + (c3 × c4)T (c4 × c2))(xyz) = 0

since u2c∗i
2 = (ci × u)2.

If we set ∆i,j,k = (ci × cj + cj × ck + ck × ci)2 we get the desired result.

With z = 1− x− y, P can also be interpreted as a polynomial in the 2 variables x and y, or as
a 1-dimensional curve in the x-y-plane. We note that the total degree of P is 3, and the degree in
each variable is 2.

In order to compute the cylinders with fixed radius r in the set C(c1, . . . , c4), the additional condi-
tion R1(x, y, z) = r has to be satisfied. Unfortunately, this leads to a significantly more complicated
polynomial equation Q(x, y) = 0, with total degree 6.

Let Cf (c1, . . . , c4, r) be the set of all cylinders with radius r that pass through c1, . . . , c4 and
whose axis line is not parallel to the plane through c2, c3, c4. Then Cf is given by the set of solutions
of the system { Q(x, y) = 0, P (x, y) = 0 }, and can be obtained algebraically by computing the roots
of the resultants Fx = Res(P,Q, y) and Fy = Res(P,Q, x). These resultants have degree 12.

Lemma 2 If c1, . . . , c4 are not collinear, the set Cf (c1, . . . , c4, r) contains at most 12 cylinders.
Assuming that the ci are rational points, each cylinder is specified uniquely by algebraic numbers of
degree at most 12.

In this lemma, we assume a cylinder is specified by the direction vector u introduced above.
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2.2 Bit Complexity

Proposition 1 provides the framework for an approximation algorithm for (P1). By exploiting ideas
from the theory of exact computation, we can make such an approximation algorithm “exact” in the
sense that – given rational input points with coordinates of bit-size ≤ L – it is possible to find the
input points that define the smallest enclosing cylinder(s) in time depending polynomially on n and
L.

In the following, it is useful to consider the optimization function (the radius r of a smallest
enclosing cylinder) as a function of the axis direction, and thus as a surface in R3. This surface is given
by 2-dimensional surface patches (corresponding to cylinders that touch 3 points), 1-dimensional
ridges (corresponding to cylinders that touch 4 points), and vertices (defined by tuples of 5 points).

Now assume that r◦i , i = 1, 2, denotes a local minimum of a surface patch, a local minimum of a
ridge, or the “height” of a vertex. Further, let δ be a separation gap between any two values r◦1 and
r◦2 that are not equal, i.e., |r◦1 − r◦2| ≥ δ for all r◦1 6= r◦2. Then the combinatorial solution of (P1) can
easily be derived from a δ–approximate solution of (P1).

The computation of the gap δ is non-trivial, requiring an algebraic characterization of the local
minima above, and the application of multi-variate root bounds. In the sequel, we shall focus on the
computation of δ for the most complicated case, when r◦1 and r◦2 are the local minima of ridges.

Let c1, . . . , c4 be an arbitrary choice of input points. Our goal is to compute a discrete set of
values which contains r◦1, a local minimum value with respect to c1, . . . , c4. Following subsection 2.1,
let R1(x, y) be the squared radius of the circumcircle of c∗1, c

∗
2, c
∗
3, and P1(x, y) the polynomial which

defines the cylinder with direction parameters (x, y) passing through c1, . . . , c4. Then the candidates
for r◦1 are the local minimum values of R1(x, y) under the side condition P1(x, y) = 0. By the rule of
Lagrange, there exists a parameter λ such that the following two conditions hold at the minima:

(1)
∂R1

∂x
+ λ

∂P1

∂x
= 0, (2)

∂R1

∂y
+ λ

∂P1

∂y
= 0.

Eliminating λ in these equations, let Q1(x, y) be the numerator of the expression

∂R1

∂x
− ∂R1

∂y

∂P1

∂x

(
∂P1

∂y

)−1

.

Then r◦1 =
√
R1(x◦1, y

◦
1), where (x◦1, y

◦
1) is a solution of the system { P1(x, y) = 0, Q1(x, y) = 0 }.

Analogously, let r◦2 be a minimum candidate for a different choice of input points, and P2, Q2, R2

the corresponding defining formulas. Then the needed separation gap can be obtained as a lower
bound for |δ| in the system of equations

(1) P1(x1, y1) = 0,
(2) Q1(x1, y1) = 0,
(3) P2(x2, y2) = 0,
(4) Q2(x2, y2) = 0,

(5)
√
R1(x1, y1)−

√
R2(x2, y2) = δ.

By repeated squaring, formula (5) can be transformed into a polynomial equationR(x1, y1, x2, y2, δ) =
0 such that the set of solutions is only increased by a finite number of new candidates. Now, a bound
for δ can be obtained from the gap-theorem of Canny [Ca].
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Proposition 2 ([Ca]) Let f1, . . . , fn be n polynomials in n variables, with degree ≤ d and coefficient
magnitude ≤ c. Assume that the system {f1 = 0, . . . , fn = 0} has only a finite number of solutions
when homogenized. If (α1, . . . , αn) is a solution with αi 6= 0, then |αi| > (3dc)−nd

n
.

With c = 2L, d = const and n = 5, we get |δ| = 2−O(L). This gives us:

Proposition 3 Let C be a smallest enclosing cylinder for input set I, with radius r∗. Then any
cylinder C ′ 6= C that touches a different set of points than C has radius r = r∗ or r ≥ r∗+ 2−cL, for
a suitable constant c.

To conclude, O(L) iterations of the decision algorithm are sufficient to determine the combina-
torial solution.

Remark 1 The use of the general gap-theorem 2 gives constants that are far beyond from being
practical. It would be desirable to derive sharper bounds for special cases of this theorem.

2.3 Combinatorial Complexity

The goal of this subsection is to provide some intuition on the combinatorial complexity of the
considered problems – with focus on lower bounds. In particular, our constructions show that the
problems are far from being convex or LP-type.

We start with an example that provides a lower bound on the number of global optima in both
(P1) and (P2). Consider an even number n of points in a plane, arranged as a regular n-gon. In this
setting, there are exactly n/2 smallest enclosing cylinders, corresponding to the smallest enclosing
slabs in the plane. Each of these cylinders is a locally smallest enclosing cylinder of 4 of the input
points. Note that, with a similar example, it is also possible to have two global minima which lie
arbitrarily close together, i.e., whose axis lines can be brought to coincidence by an arbitrarily small
rotation.

To give a lower bound on the possible number of local optima is slightly more complicated, and
we first turn our attention to the restricted problem (P2). Consider an even number n of points that
are arranged on the unit sphere S2, n/2 on the circle C1 (C2) of intersection with the plane z = 0
(y = 0). Further, we assume that the points on each circle are uniformly stepped and diametrically
opposed. Let each line through the origin be parameterized by its intersection with the sphere S2.
Now let us ask for the set of cylinders with distance ≥ 1−ε to one input point c. This set corresponds
to a thin stripe on S2, and describes the forbidden cylinders with respect to c. The set of enclosing
cylinders with radius ≤ 1 − ε is the complement of the union of the stripes for all c ∈ I. For ε
sufficiently small, this set has quadratic complexity, and any connected component must correspond
to a local minimum.

Finally, let us consider the general setting (P1) for the same input set I above. In this case,
it is easy to see that – due to symmetry – a necessary condition for a line ` to be the axis of a
locally smallest enclosing cylinder is that the line ` passes through the origin. Hence, the Ω(n2) local
minima in (P2) stay local minima even if we add the remaining translational degrees of freedom.

Proposition 4 For n given input points, there can be Ω(n) globally smallest and Ω(n2) locally small-
est enclosing cylinders.

Remark 2 Agarwal et al. [AAS] have a similar result. They show that the set of cylinders of a given
radius enclosing a set of n points can consist of Ω(n2) connected components.
It remains open if there exist examples for (P1) with more than a quadratic number of local or of
global minima.
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3 Optimization Algorithms

3.1 Linearization

In order to illustrate the basic idea of our optimization technique, we first consider the anchored
problem (P2). Our focus is the fixed-parameter problem to decide whether there exists an anchored
cylinder of given radius r that encloses all input points.

Let `ab be the line through the points a, b ∈ R3. We fix a at the origin and w.l.o.g. require b to
lie on the plane z = 1:

a = (0, 0, 0), b = (bx, by, 1).

Further, let c = (cx, cy, cz) be an arbitrary input point. We call `ab admissible with respect to c if

d(`ab, c)2 ≤ r2, (1)

with

d(`ab, c)2 = ((c2y + c2z)b
2
x + (c2x + c2z)b

2
y

−2cxcybxby − 2cxczbx − 2cyczby
+(c2x + c2y)) / (b2x + b2y + 1).

We embed our problem into a higher-dimensional space by setting

X1 = bx,X2 = by,X3 = b2x,X4 = b2y,X5 = bxby. (2)

Now, equation (1) is true if and only if

Pc(X1, . . . ,X5) ≤ 0, (3)

where Pc is the linear equation

Pc(X1, . . . ,X5)
= (−2cxcz)X1 + (−2cycz)X2

+(c2y + c2z − r2)X3 + (c2x + c2z − r2)X4

+(−2cxcy)X5 + (c2x + c2y − r2).

According to this equation, Pc defines a hyperplane in R5, and inequality (3) a halfspace Hc. The
set of equations (2) defines a 2-dimensional manifold which can be written as

M = { (X1, . . . ,X5) : Q(X1, . . . ,X5) = 0 }

with

Q(X1, . . . ,X5)
= (X2

1 −X3)2 + (X2
2 −X4)2 + (X5 −X1X2)2.

For the set I of input points, the fixed-parameter problem has a solution if and only if there
exists a line `ab which is admissible with respect to each c ∈ I. This is equivalent to the existence of
a common intersection of the halfspaces Hc and the manifold M . The intersection

H =
⋂
c∈I

Hc
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is a convex polytope of complexity O(n2), and can be constructed in the same time bound by
Chazelle’s result [Ch]. In order to intersect H with M , we triangulate H into O(n2) simplices. Each
of these simplices can be tested for intersection with M separately in constant time if we assume an
algebraic model of computing, and in time O(µ(L)) if we assume a bit model [Re]. (Note here that
M is a semi-algebraic set and the above test corresponds to deciding the satisfiability for a system
of polynomial equations and inequalities.) We have shown:

Lemma 3 The fixed radius version of problem (P2) can be solved in time O(n2) in the algebraic
model, and in time O(n2µ(L)) in the bit model.

This argument generalizes in a straightforward way to proving the general theorem 3.

Remark 3 Due to the possible quadratic number of local minima, this result may be optimal. It is
an open question whether problem (P2) belongs to the class of n2-hard problems introduced in [GO].

The above technique extends to problem (P1). In this case, we consider – w.l.o.g. – axis lines
that are not parallel to the plane z = 0. Let `ab be the line through the points a, b ∈ R3, with

a = (ax, ay, 0), b = (ax + bx, ay + by, 1).

Then `ab is admissible with respect to c = (cx, cy, cz) and given radius r iff

Pc(ax, ay, bx, by) ≤ 0,

with

Pc(ax, ay, bx, by)
= c2x(b2y + 1) + c2y(b

2
x + 1) + c2z(b

2
x + b2y)

+cxcy(−2bxby) + cxcz(−2bx) + cycz(−2by)
+cz(2byay + 2bxax)
+cx(−2ax − 2axb2y + 2bxbyay)

+cy(−2ay − 2ayb2x + 2bxaxby)
+(a2

xb
2
y + a2

yb
2
x + a2

x + a2
y

− r2(b2x + b2y)− 2bxaxbyay)

−r2.

At first glance, Pc has an order 10 linearization. However, we can save one variable by grouping the
terms with factors c2x, c2y and c2z differently:

c2x(b2y + 1) + c2y(b
2
x + 1) + c2z(b

2
x + b2y)

= (c2y + c2z)b
2
x + (c2x + c2z)b

2
y + (c2x + c2y),

and setting

X1 = bx,X2 = by,X3 = b2x,X4 = b2y,X5 = bxby,

X6 = byay + bxax,

X7 = −ax − axb2y + bxbyay,

X8 = −ay − ayb2x + bxaxby,

X9 = a2
x(b2y + 1) + a2

y(b
2
x + 1)− r2(b2x + b2y)

− 2bxaxbyay.

Applying theorem 3, we conclude:
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Lemma 4 The fixed radius version of problem (P1) can be solved in time O(n4) in the algebraic
model, and in time O(n4µ(L)) in the bit model.

Remark 4 If Pc has an order 8 linearization, this fact would not improve the asymptotic complexity
of the problem. But it means we could use some of the O(ndk/2e) convex hull algorithms to achieve
the same complexity bounds.

3.2 Parametric Search and Exact Approximation

In this subsection we shall apply parametric search and exact approximation to problem (P1), based
on the decision algorithm from the previous subsection. Note that the presented techniques apply
as well to the restricted setting (P2).

We shall use the parametric search paradigm in its general form (see eg. [AST] for a detailed de-
scription). Let Ts denote the running time of a sequential decision algorithm for the fixed-parameter
problem, and Tp (resp., P ) the time (resp., number of processors) of a parallel decision algorithm,
then the optimal value (here, r∗) can be computed in sequential time O(PTp+TsTp logP ). It remains
to give a parallel version of the decision algorithm. Here we exploit the new parallel algorithm for
convex hulls of [AGR]. For dimension d ≥ 4, there is an algorithm with time O(log n) and work
O(nbd/2c logc(dd/2e−bd/2c) n), for some constant c > 0. Further, with O(nbd/2c) processors, the test for
intersection of H with M can be done in constant time in an algebraic model (resp., a real RAM,
see [Re]). Plugging this into the parametric search paradigm, and observing that – in an algebraic
model – the combinatorial solution of (P1) can easily be constructed from the computed optimum
value r∗, we obtain:

Lemma 5 A combinatorial solution of (P1) can be computed by parametric search in time O(n4 logk n),
for a fixed constant k > 0.

Turning our attention to the bit model, as shown in subsection 2.2, the combinatorial solution
of (P1) can be obtained from an ε-approximate solution for r∗ if ε = 2−O(L). To compute this
approximate solution, it suffices to run the decision algorithm for the fixed-parameter problem O(L)
times, with radii of bit-size O(L) as input. This yields:

Lemma 6 A combinatorial solution of (P1) can be computed in the bit model in time O(Lµ(L)n4).

3.3 ε-Approximation and Trade-off

Subsection 3.1 describes a decision algorithm for the fixed-parameter problem for (P1). In an alge-
braic model of computing, and with our assumption ‖c‖ = O(1) for c ∈ I, this algorithm turns into
an ε–approximation algorithm by using binary search for r ∈ [0, 1]:

Lemma 7 An ε-approximate solution of problem (P1) can be computed in time O(n4 log ε−1).

As a trivial application of discretization, we may also exploit that elimination of the “rotational
freedom” reduces (P1) to the problem of finding a smallest enclosing circle for a set of points in a
plane – which can be solved in time linear in n.

Any change of the axis direction by an angle α ≤ ε can change the location of an arbitrary,
projected point c∗ (see section 2) by at most O(ε). Thus, we get an ε-approximation if we discretize
the directions of the axis by a uniform grid on S2. Finally, this yields a quadratic dependency of
running time on 1/ε, but only a linear dependency on n:

11



Lemma 8 An ε-approximate solution of problem (P1) can be computed in time O(nε−2 log ε−1).

The rest of this subsection is devoted to the interesting problem of how to fill the gap between
lemma 7 and lemma 8. Again, we shall use the linearization technique.

Let us consider the line `ab through the points

a = (ax, ay, 0), b = (ax + bx, ay + sbx, 1).

The point b lies on a line in the plane z = 1, with origin (ax, ay) and “slope” s. Again, for given s
and r, `ab is admissible with respect to c = (cx, cy , cz) ∈ I iff

Pc(ax, ay, bx) ≤ 0,

with Pc the numerator of
d(`ab, c)2 − r2.

Following the same strategy to group variables in Pc as above, we can write Pc as

Pc(ax, ay, bx)
= b2x(s2c2x + c2y + (1 + s2)c2z − 2scxcy)

+bx(−2scycz − 2cxcz)
+(−2ax + 2sb2

xay − 2s2axb
2
x)cx

+(−2ay − 2ayb2x + 2saxb2x)cy
+(2axbx + 2saybx)cz
+(a2

yb
2
x − r2b2x + a2

x + a2
y

− 2saxayb2x + s2a2
xb

2
x − r2s2b2x)

−r2.

Hence, we obtain a linearization of Pc with 6 variables X1, . . . ,X6. Proceeding as in 3.1, we get –
for any fixed s – an algebraic decision algorithm with running time O(n3).

We now discretize (P1) by choosing lines with uniformly stepped slope angle for the position of b.
Further, we consider choices of a and b in planes parallel to x = 0, y = 0 and z = 0. It is again easy
to see that independent optimization for each of these instances will yield an ε-approximate solution
of (P1).

Lemma 9 An ε-approximate solution of problem (P1) can be computed in time O(n3ε−1 log ε−1).

Remark 5 The presented discretizations rely on the assumption that all input points are enclosed in
the unit sphere, and that we are only interested in absolute errors. In a bit model where input numbers
are bounded by 2L, it would be interesting to remove these assumptions. As mentioned earlier, in
the algebraic model, Agarwal et al. [AAS], recently gave an approximation algorithm for finding a
cylinder whose radius is at most 1 + δ times the optimum in time O(n/δ2). This is accomplished
by first computing a crude estimate of the direction for the optimum cylinder axis, and applying a
procedure similar to that of Lemma 8.
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Figure 1: Polar plot of the radius of the smallest enclosing cylinder as a function of its axis orientation.
The set of points is the vertices of a cube.

4 Experimental Results

In this section we describe a simple optimization method and evaluate this method by comparing its
results to “exact” results that we obtained with maple.

To implement a fast optimization technique, we use our usual representation of a smallest en-
closing cylinder by specifying only its axial direction. By this reduction, the optimization problem
can be viewed as a search for the minimum on a 2-dimensional surface in 3-space. Each point of
this surface can be obtained as the result of a convex optimization problem. (An example of this
surface can be seen in figure 1.) Thus, we seek the minimum of a composed function f ◦g. We choose
an optimization technique which only requires function evaluations but not to compute derivatives.
This technique – the standard downhill simplex algorithm as described in [PTVF] – tries to follow
the direction of steepest descent. It is applied in two layers, to compute the minimum of f and
(recursively) that of g.

For a given start axis, the optimization method converges to some local minimum. To locate
a global minimum, one can choose a 2-dimensional grid of start values. However, our experiments
indicate that there may be a better choice for optimization start values: the set of directions of edges
in the convex hull of I (note the special meaning of these directions in Proposition 1).

In the sequel, we shall report on some experimental results with this special set of start values.
We first computed smallest enclosing cylinders for randomly generated tetrahedra. In a sequence of
100 tests, at least one of the 6 considered start values (the edge directions of the tetrahedron) led to
the optimum. The number of tests in which k start values succeeded is listed below:

k 6 5 4 3 2 1 0
successes 46 16 15 13 9 1 0

In two additional test sequences, we tested 50 sets of 5 random points, and 10 sets of 8 random
points (the coordinates have been chosen in a way to guarantee convex position). Again, in each
test the downhill simplex algorithm converged to the minimum for at least one starting value, and
generally for many.

The most complex examples which we tried consisted of 12 points. The maple implementation
did run several days on these sets to find the optimum. The numerical optimization converged within
seconds for each starting value. To stimulate further research, we include the data as benchmarks:
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Example 1: The 12 input points are arranged near to two circles of radius 10 in the two parallel
planes z = −10 and z = 20:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

x 5 −5−11 −5 5 10 4 −6−11−5 5 9
y 8 9 0 −8 −9 0 9 9 1 −9−8−1
z −10−9−10−11−10−9 21 20 19 20 21 18

According to maple, the smallest enclosing cylinder passes through the 5 points c3, c5, c6, c9, c10,
and has radius 10.5003 ± 10−4. The second-smallest enclosing cylinder through 5 points touches
c3, c5, c6, c8, c10, and has radius ≈ 10.5009.
The downhill simplex algorithm converged to the minimum radius ≈ 10.5003 for the starting values
(c7, c4), (c9, c3), (c10, c4), (c12, c5) and (c12, c1).

Example 2: The 12 input points are arranged near the 12 vertices of an icosahedron with center
at the origin:

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

x −12−12 9 10 23 10 −10−24 12 12 −10−8
y −19 1 −13 12 −1−21 21 1 19−1−12 12
z −6 −20−18−17−2 5 −6 2 6 20 17 18

The optimal solution has been computed by maple as the cylinder through the 5 points c1, c3, c7, c9, c11,
with radius ≈ 21.0309. All but 2 points lie close to the surface of this cylinder. (For an exact model
of the icosahedron, the optimal cylinders would pass through 10 points.) The downhill simplex al-
gorithm obtained this solution for the starting values (c3, c1), (c3, c2), (c4, c2), (c5, c1), (c8, c5) and
(c9, c8).

To conclude this section, we observe that the proposed downhill algorithm behaves amazingly
well, and did not fail for the examples we tried.

5 Final Remarks

As the field of geometric optimization matures, it treats problems of increasingly non-trivial algebraic
complexity. The traditional neglect of bit complexity is no longer justified. The smallest cylinder
problem is one of these problems. By combining the general linearization technique with parametric
search, we developed efficient algorithms in both models. These results, as well as the exact results
of Agarwal et al., seem mainly of theoretical interest.

The ε-approximation schemes have possibly greater practical applicability. But even here, our
numerical experiments suggest that these may not be competitive with some heuristic numerical
approaches. For specific applications, like metrology, the extra effort of using an exact approach
can be justified. Here, the model of computing has to be chosen carefully, and the bit model offers
advantages when compared to highly involved algorithms that operate in the algebraic model. For
other applications, like assembly planning, computational geometry will probably fail in an attempt
to substitute numerical approaches by exact and ”efficient” but highly complex algorithms. Here,
theoretical contributions can increase the understanding of numerical techniques.
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