
ongoing re

1
e
e
1
Proceedings of DETC’01
ASME2001 Design Engineering Technical Conferences and Computers and Information

September 9-12, 2001, Pittsburgh, Pennsylvania, USA

DETC’01/DAC-21057

A GENERAL METHOD FOR COMPUTING THE REACHABLE SPACE OF
MECHANISMS

Artur Fuhrmann
DaimlerChrysler Research and Technology

Virtual Reality Competence Center (FT3EV)
Ulm, Germany

artur.fuhrmann@daimlerchrysler.com

Elmar Schömer
Max-Planck-Institute for Computer Science

Algorithms and Complexity Group
Saarbrücken, Germany

elmar.schoemer@mpi-sb.mpg.de

Proceedings of DETC'0
ASME 2001 Design Engineering Technical Conferenc

and Computers and Information in Engineering Conferenc
Pittsburgh, PA, September 9-12, 200

DETC2001/DAC-21057
ABSTRACT
A new methodology1 is presented for computing a minimal

envelope for the reachable space of a mechanism, i.e. the space
that contains a given mechanism in all its admissible configu-
rations. The research is motivated by the packaging process in
Digital Mock-Up applied in automotive industry. An important
task in the concept phase, the automated determination of the
space requirement for all parts, is still an unsolved problem in
the case of mechanisms. The particular benefit of the method
presented is its generality and robustness: It is able to deal with
both open- and closed-loop mechanisms. The reachable space is
computed with regard to the geometric description of each part.
The approximation is enclosing and always converges in a uni-
form way and the tolerance can be pre-defined by the user. The
method combines the use of bounding object hierarchies and the
application of interval analysis. It is also able to approximate the
swept volume of an object following a parameterized trajectory.
We describe how the efficiency can be improved by lazy evalua-
tion and by a deeper problem analysis. The presented algorithms
are implemented and tested to a large extent2.

1 Introduction
The changing markets require new products that have to be

developed and produced with higher quality, in shorter periods
and at a minimum of costs. For automotive and aerospace indus-

1Patent pending (DaimlerChrysler AG, (Fuhrmann et al., 2000))
2This work will be part of the Ph.D. thesis of the first author and represents
search.

1

try, Digital Mock-Up (DMU) is one of the key success factors for
dealing with these challenges. It is often defined as a realistic
computer simulation of a product, providing all required func-
tionalities for design, manufacturing and maintenance. It serves
as a basis of product development and influences important busi-
ness decisions. Presently, the development process is still ori-
ented to Physical Mock-Ups (PMU), but the importance of DMU
is steadily increasing. PMUs are still essential, but the use of
DMU helps the engineers to save many PMUs and to increase
their maturity.

A very important process as a part of the digital validation
is the packaging process: The digital verification of the physical
construction of the vehicle. Packaging can be seen as a well-
defined process between component engineers and engineers re-
sponsible for the construction of the entire vehicle. Its objective
is the determination of how space is occupied, to check parts
for minimum clearance, in particular the avoidance of collisions,
and also the investigation of the assembly and disassembly of ob-
jects. The results are digitally documented in the form of e.g. dis-
tances, geometric adjacencies between parts, envelopes for paths
and geometric descriptions of occupied space. This information
is often managed by the underlying product data management
(PDM) system. Packaging relevant objects that complicate the
work of packaging engineers are cables, hoses, clips and in par-
ticular mechanisms. These parts are dynamic objects and associ-
ated with a particular offset tolerance.

Static packaging, in contrary to its dynamic counterpart, is
often seen as technologically simply. It mainly deals with the
computation of the space requirements of objects and with static
Copyright  2001 by ASME

collision checks. Indeed these problems are already solved in the
case of rigid objects (solids). On the other hand, it is still a dif-
ficult and time-consuming task to determine the minimal space
needed for a complex mechanism. It is even unclear how to de-
fine this space requirement of a mechanism. We mainly distin-
guish between two types:

Motion driven The motion driven space requirement is the
space that a mechanism (e.g. a wheel suspension) needs for
its most characteristic motions. These may be evaluated sta-
tistically by physical tests or simulations, and then are used
to feed a swept volume simulation.

Reachable space The reachable space (the (primary)
workspace) is the set of all points in space that can be
reached by the mechanism within a legal configuration.

This paper deals with the latter problem. The goal is to present
new methodologies that meet the demands of packaging engi-
neers. The ranking of the main objectives is as follows.

1. Generality and automation. The problem should be solved
in a very general way, no case distinction should be neces-
sary. The computation should be able to run as a batch job
over night.

2. Accuracy and robustness. The computation should be very
accurate and robust. The accuracy should be freely defin-
able.

3. Efficiency. The method should be able to deal with complex
kinematic structures with many degrees of freedom and with
the complex geometric shapes of the involved bodies.

An exemplary practical application is given by the steering
column of an automobile. In order to be adjustable in height and
depth, it consists of a number of revolute, prismatic and cardan
joints. These form a kinematic chain that is connected to the
car body through two further joints. The result is a closed-chain
mechanism with many degrees of freedom for which the estima-
tion of the space requirement represents a non-trivial task for the
packaging engineer.

Presently the problem is solved by a trial-and-error approach
with the aid of CAx tools. Based on the engineers’ expert know-
ledge, the union of known critical configurations is computed,
then the column is virtually rotated about its main axis and the
swept volume of this rotation is calculated. This result is taken
2

as an approximation for the space requirement, however noth-
ing is known about the error made by this procedure. Obviously
this approach has a strong dependence on specific properties of
the mechanism. Up to what extent expert knowledge can be ex-
ploited, depends on the kinematic differences between a novel
mechanism and its predecessor.

As far as known to the authors, no commercial software of-
fers a functionality that is able to compute the reachable space
in general. Packaging engineers often try to solve the problem
according to the motion-driven case. To meet these demands,
modern CAx systems offer various tools for computing swept
volumes and envelopes. Indeed a procedure is known that re-
cursively determines the reachable space by a sequence of swept
volume and union operations3. However it is only applicable to
open kinematic chains. A discrete variant of this approach is de-
scribed e.g. in (Gupta, 1997). The computation of the swept vol-
ume is not a trivial task, see (Wang and Wang, 1986), (Blackmore
et al., 1992) and (Abdel-Malek et al., 2000). Personal commu-
nications with packaging engineers reveal that the use of swept
volume tools, even of modern CAx systems, results in an unman-
ageable amount of data, for the tools also sweep the interior of
each part. As already indicated, this method is inherently con-
nected with the property of open kinematic chains that their set
of all admissible parameters is given by an interval4. However in
the case of closed kinematic loops this set is a highly nonlinear
manifold, so it is very unlikely that this method could be applied
somehow.

In robotics, the space requirement of a mechanism is con-
sidered as the reachable or total workspace, which specifies
the space that is reachable by the tool-center-point of the end-
effector of a mechanical manipulator. Similar to approaches in
the field of inverse kinematics, the investigation of workspaces
in robotics strongly benefits from special properties of mechan-
ical manipulators. Frequently additional assumptions are made
about the degrees of freedom or about the type of joints. Struc-
tures with closed loops are not very intensively treated and the
geometric shape of the parts is neglected in almost all cases.

Many methods are analytical or numerical in nature and of-
ten based on rank deficiency criteria of the position jacobian.
See the works of e.g. (Kumar and Waldron, 1981), (Rastegar
and Deravi, 1987). (Abdel-Malek et al., 1999) present methods
for the determination of parametric equations of surface patches
that envelop the workspace of serial manipulators. The equa-
tions are then evaluated with the aid of a mathematical pack-
age. This approach yields very accurate solutions and is well-

3In order to sketch this, we consider an open chain with joints J1; : : : ;Jn con-
necting the bodies B0; : : : ;Bn, with B0 denoting the base. In order to generate the
workspace Wk for the joints Jk ; : : : ;Jn and bodies Bk; : : : ;Bn, we first unify Wk+1

with Bk to a single solid. Then we compute the volume that is swept by this solid
while joint Jk is moved through its entire range. The total workspace is given by
the union of W1 and B0.

4We firstly neglect self collisions between components of the mechanism
Copyright  2001 by ASME

suited for deeper analyses. But the authors also state that it is
not capable of handling closed loops. The numerical method
by (Haug, 1995) may also be used for the study of closed-loop
manipulators. It is based on a highly nonlinear system derived
from the jacobian rank deficiency criterion. The solution to the
system describes inner and outer boundaries of the workspace
and is traced by sophisticated continuation methods as curves on
cutting planes. These global methods have to deal with special
difficulties like bifurcation points and the finding of initial so-
lutions of large-scale systems, see also (Wang and Wu, 1993).
A comparison between the analytical and numerical method can
be found in (Abdel-Malek et al., 1997). These types of methods
are well-suited to compute the workspace for a single reference
point. However it is unclear, how they can efficiently be applied5

to solve the problem with regard to complex geometric shapes.
The direct combination of the geometric representation of a body
and the workspace boundary for its reference point does not yield
the desired result. We address this again in subsection 2.2.

A voxel approach, discretizing the cartesian space and
checking the reachablility of lattice vertices, could potentially
solve the problem in general. However it leads to a very hard
sub-problem: To decide in a globally correct way, whether any
point of a kinematically restricted body is able to reach a given
voxel. This problem has apparently not attracted any attention so
far. We investigate this in (Fuhrmann, 2001). The global solution
of the problem requires an expensive search in parameter space,
hence we consider our method presented in section 4 to be more
direct and more efficient.

In conclusion, there seems to be a lack of methods that are
general enough for the purposes of packaging engineers. On one
hand, geometrically based methods (e.g. swept volumes) are not
able to handle closed kinematic chains, on the other hand, it is
unclear from the viewpoint of numerical algorithms how to deal
with a complex geometry efficiently.

2 Preliminaries
This section introduces the basic terminology and basic facts

about mechanisms and kinematics and our main tools like bound-
ing object hierarchies and interval mathematics.

2.1 Mechanisms
This paper deals with mechanisms in terms of multibody

systems, a set of bodies (also called links or parts) intercon-
nected by joints. The angle of each joint is given by a num-
ber of parameters φi which as a whole define the parameter
space D � Rn . This hyper-interval D is given by the joint
ranges Di � φi �Di; i = 1; : : : ;n. Every point in parameter space
uniquely defines a configuration of the system, i.e. the position
and orientation of each body.

5By efficiently we mean, that not every face should be considered individually
3

The ”topological” structure of a mechanism can be de-
scribed as a graph. We distinguish whether the graph contains
cycles or not: if there are no cycles, the mechanism is an open
kinematic chain or has a tree structure. In the case of closed
chain structures we have the more complex situation that several
joint parameters are no longer independent: the space of all pa-
rameters that keep the chains connected is implicitly defined by
(in general highly nonlinear) constraints and forms a submani-
fold in D. Besides joint ranges and constraints, the set of admis-
sible configurations can be further restricted by the prohibition of
collisions between bodies. We restrict ourselves to the handling
of closed-loop constraints and denote the set of these parameter
tuples as A � D. We raise the issue of self collisions again in
section 4.3.3.

The position and orientation of the reference point of each
body in terms of system parameters defines the forward kine-
matic

f : Rn �! R4�4 ; f(φ1; : : : ;φn) =

�
R t
0 1

�
(1)

with the translational part t 2 R3 and the orthogonal matrix
R 2 R3�3 describing the rotation. We use such transformation
matrices to simplify our description in this paper. In our im-
plementation the rotational part is also described by quaternions
where this is appropriate.

2.2 Reachable Space: Definition and Properties
Let a body B of a mechanical system be given as a compact

set in R3 and let f be its forward kinematic as defined above. We
denote the reachable space of B byR(B). The reachable space of
a mechanism is the union of all reachable spaces of its bodies. A
point x 2 R3 lies in R(B) if and only if there exists a point y 2 B
and an admissible tuple of parameters φ̃ :=(φ̃1; : : : ; φ̃n)

T 2A with

x = ty(φ̃) := R(φ̃)y+ t(φ̃) (2)

Equivalently we can define R(y) as the reachable space of a sin-
gular point y 2 B. Obviously R(y) is equivalent to the range of
values ty(A) over all admissible parameter tuples, so we have
R(B) = [y2Bty(A). The computation of the range of values6

over an interval is NP-hard even for polynomial functions, see
(Gaganov, 1985). As R(B) is a compact set and can be repre-
sented by its boundary, we are interested in computing the sur-
face of R(B) and use the fact

∂R(B)�
[

y2∂B

ty(A) (3)

6In general it is even not possible to compute it exactly, for it can be reduced
to global optimization that is not solvable with finite convergence unless the al-
gorithm uses the exact value of the Lipschitz constant.
Copyright  2001 by ASME

Furthermore ∂R(B) cannot be solely constructed by combining
∂R(y) for a specific reference point y 2 B with the geometric
information of B, i.e. in general it is not possible to compute
R(B) by only tracking the boundary of the workspace for a single
reference point.

The reachable space R(y) of a singular point y 2 B, just as
the reachable space of a body B, can be very complex in na-
ture. In general it contains holes, i.e. it has a nonzero topological
genus, and empty spaces that are not visible from outside called
voids. The point set R(y) is path-connected, unless the mecha-
nism has closed loops.

For the case of a singular point y 2 B, we can derive a crite-
rion, whether ty(φ̃) lies on the surface of R(y) at a certain con-
figuration φ̃. We simplify the notation by considering the transla-
tional part of the forward kinematic of the reference point t := t0
of B. Unfortunately the criterion only works in one direction: If
the criterion holds, t(φ̃) does not lie on the surface. As the cri-
terion is based on a local argument, the other direction may be
false as a result of global effects. In our context the inverse func-
tion theorem states, that there exists a small open subset around
φ̃ 2 D, such that t is a diffeomorphism and locally reversible, if
its jacobian Jt(φ̃) 2 R3�n has full rank. As a direct implication,
we have for all7 φ̃ =2 ∂D

rk(Jt(φ̃)) = max!) t(φ̃) =2 ∂t(D) (4)

Considering the situation under the constraints c : Rn ! Rm ;c�
0, we are able to apply the same arguments, resulting in

rk

�
Jt(φ̃)
Jc(φ̃)

�
= max!) t(φ̃) =2 ∂t(fφ 2 D j c(φ) = 0g) (5)

2.3 Computational Tools
2.3.1 Interval Mathematics Interval mathematics

analyses the extension of the concept of real numbers to real
intervals whose set is denoted by I. A good treatment of this
subject can be found in (Moore, 1963). The methods presented
in this paper are based on the estimation of the reachable space
of a body B over ”small” intervals of admissible parameters.
As discussed above, the reachable space R(0) of the reference
point of B over an interval X = [X1;X1]� �� � � [Xn;Xn] 2 In is
identical to the range t(X) of its translational part of the forward
kinematic. We get an inclusion function It : In �! Id which is
characterized by the property t(X) � It(X) 8X 2 In by applying
interval arithmetic on t. Each component ti can be described in
the form of an arithmetic expression, composed of constants,
elementary operations � 2 f+;�;�g and basic functions ω8. By
extending

ω(X) =�fω(x) j x 2 Xg;X �Y =�fx� y j x 2 X ;y 2 Yg; (6)

7if φ̃ 2 ∂D holds, t(φ̃) may yet be a surface point, caused by a joint limit.
8e.g. trigonometric functions or the absolute value
4

to operate on intervals we define the natural interval extension
Iti for ti and get It := (It1 ; : : : ; Itd)

T . Here�S denotes the smallest
interval containing a set S� Rn . The set of all intervals over S is
denoted by I(S). The natural interval extension is inclusion iso-
tone: It(Y) � It(X) 8Y � X . The width of an interval quantifies
its size in the maximum norm, w(X) :=maxifXi�Xig. The func-
tion t is called Lipschitz on S, if there exists a positive constant L
with

w(It(X))� L �w(X) 8X 2 I(S):

A general way to get better inclusion functions is the considera-
tion of derivatives. We call

Mt(X) = f (C)+(X�C)T IJt(X) (7)

the mean value form for t, where C denotes the center of X . It
has the inclusion property as can be seen by the mean value the-
orem of analysis. The excess-width w(I f (X))�w(f (X)) of the
mean value form converges quadratically to zero with w(X)! 0,
whereas the convergence is linear in the case of the natural inter-
val extension, which in turn can be faster evaluated.

The methods described below are based on the subdivision
of intervals and the computation of estimations. Such recipes
are also used by interval branch&bound methods for global op-
timization, e.g. see (Hansen, 1992). In particular, we construc-
tively compute the range of a vector-valued function over X 2 In.
No literature on exactly this problem could be found by the au-
thors; for the real-valued case see (Asaithambi et al., 1982).

2.3.2 Bounding Object Hierarchies The most effi-
cient way to handle great amounts of data is the use of hierarchi-
cal data structures, see (Samet, 1990). In our context bounding
object hierarchies will prove themselves as very useful, as they
already did in applications such as real-time collision detection,
see (Hubbard, 1995). The reader can imagine these data structure
as a representation of geometric data by simple enclosing objects
with many levels of details. Their usage enables algorithms to
focus on the relevant parts of a complex object, thus increasing
the efficiency. We consider bounding object hierarchies as trees
whose nodes represent bounding objects for subsets of a given
geometric set. The sons of each inner node represent bounding
objects together enclosing the same data as their father. The ge-
ometric primitives are usually stored in the leafs.

We distinguish between a surface- and a volume-based rep-
resentation. In the first case, only the boundary representing the
object is stored, whereas in the second case the entire volume of
the object is considered. Later we discuss the generation of a
surface-based hierarchy using spheres as bounding objects, it is
called sphere-tree.
Copyright  2001 by ASME

3 Pre-Computation
The computation of the reachable space R(B) starts with a

pre-computational step. Similar to other methods, our main pro-
cedure demands an abstract mathematical input in the form of a
set of functions. A very elegant way is to pre-compute all func-
tions symbolically and to store them in operator trees. These
data structures are evaluated recursively either in a standard way
to get the function-value or with interval arithmetic. This real-
izes the desired inclusion functions on which our algorithms are
based.

The information that geometrically describes B should be
represented by its boundary (B-rep.) by a set of faces. For a
volume-based computation, B has to be a solid and the set of
faces must describe a polyhedron in a topologically correct way.
This may cause difficulties, for the automated export of CAD
data is still not fully solved, e.g. the tessellation process gener-
ates small gaps between adjacent faces (cracks) in cases where
no topological information is stored with the CAD data. In this
paper we focus on a surface-based computation which regards
each face independently. Hence it is more tolerant regarding such
effects. We hierarchically store the set of faces in a sphere-tree
whose construction is described in subsection 4.3.2.

In summary we expect a mechanism to be given as a set of
bodies and joints with the following information.

1. The geometry of each body is described by its boundary, by
a set of faces.

2. For each kinematic link its technical data is known, includ-
ing references to the pair of incident bodies.

The technical data of a joint consists of its type that also gives us
the number of its free parameters, the joint range, and its trans-
formation relative to the linked bodies. One of the given bodies
has to be declared as the base that has a fixed position and orien-
tation.

3.1 Determination of Forward Kinematics
Let Ji; j denote the joint that connects body Bi and body B j.

This structure can be modeled as an undirected graph by identi-
fying each part with a node and connecting a pair of nodes if the
corresponding joint exists. The node that is assigned to the base
body is called source. If this graph contains any cycles, the first
step is to compute its spanning tree. Once we have a tree struc-
ture, there exists a unique path from the source to each node that
enables us to uniquely assign a forward kinematic to each body.

Let Ai; j 2 R4�4 be the homogeneous matrix describing the
relative transformation from the body reference frame of Bi into
the joint frame of Ji; j

9 and let Ti; j : Rk �! R4�4 describe the
characteristic transformation of Ji; j. This transformation and its
number of variables is solely defined by the joint type. With this

9the transformation from Bj to Ji; j is denoted by Aj;i
5

notations the forward kinematic of Bi is given by

fi(φ1; : : : ;φl+k) =

fi�1(φ1; : : : ;φl) �Ai�1;i �Ti;i�1(φl+1; : : : ;φl+k) �A�1
i;i�1; (8)

where fi�1 represents the forward kinematic of Bi�1, the unique
predecessor of Bi in the spanning tree. These dependencies are
determined by applying breadth-first search starting at the source
node.

Each evaluation of f necessitates a re-calculation of (8) with
constant arguments. We avoid this for the reason of efficiency
and perform this computation symbolically. The idea is realized
by storing each single operation in an operator tree. Each inner
node of the tree symbolizes an arithmetic operation or a primi-
tive function whose number of arguments defines the out-degree
of the node. Each leave of the tree stores a constant or a vari-
able. The different priorities of the operations are hidden in the
hierarchy of the tree. The way of evaluation is independent of
the operator tree itself and can be regular or e.g. done by us-
ing interval arithmetic realizing a natural inclusion function for
the corresponding function. Usually the tree is simplified before
its first use by e.g. deleting neutral operations or summing up
operations on constants.

3.2 Determination of Constraints
The abstract representation of the kinematic behavior of

each body of the mechanical system is still incomplete if its kine-
matic graph contains cycles. In this case there exist non-tree
edges, edges contained in the graph but not in its spanning tree.
Let Ji; j represent such an edge, then f0i = f j �A j;i �Ti; j �A�1

i; j is an
alternative valid forward kinematic for body Bi. In order to keep
the loop closed at Ji; j, we have to equate both forward kinemat-
ics, thus getting the constraint10

c := fi� f0i � 0 (9)

We calculate (9) for each non-tree edge and obtain a set C of all
constraints. These have to be satisfied in order to keep all the
loops closed in the system.

The main computation discussed later considers each body
B separately. In general it is not the case that B is restricted by
every loop. We can save many computations, if we neglect those
constraints whose violation has no effect on B. In order to deter-
mine a minimal set of constraints for B, we observe that C may
be subdivided into subsets that are independent of each other in
the same way as e.g. f (x;y) = 0 and g(z) = 0 can be inves-
tigated and satisfied independently. This subdivision of C into
C1; : : : ;Ck can be determined by collecting constraints accord-
ing to the indices of their parameters such that no constraint is

10By calculating with quaternions we get seven individual real-valued con-
straints.
Copyright  2001 by ASME

contained in two subsets. In a second step, for each body B we
compare the indices of its forward kinematic f(φ1; : : : ;φn) with
those of C1 : : : ;Ck. For i = 1; : : : ;k the subset Ci of constraints
restricts the position and orientation of B if one of the variables
φ1; : : : ;φn also appears in Ci. This can be tested by a compari-
son of the indices analogously. The set operations on indices can
efficiently be implemented by using a union-find data-structure,
see (Mehlhorn, 1984). For each body B, we store the minimal set
of constraints c : Rn �! Rm .

4 Hierarchical Approximation
The idea of hierarchical approximation is the estimation of

the forward kinematic of a body B over (hyper-)intervals gener-
ated by a hierarchical subdivision of the parameter space. If the
mechanism has closed loops, the pre-computed constraints are
checked simultaneously. Both tasks are realized with the help of
inclusion functions. The result is an approximation of the reach-
able space of the reference point of B. We use the pre-computed
bounding object hierarchies to extend our methods to take the
geometric description of B into account.

The volume-based variant of our method is capable of com-
puting an enclosing ε-approximation of the reachable space,
where ε denotes a tolerance pre-defined by the packaging en-
gineer. However we will emphasize on the surface-based variant
which computes an envelope for R(B). This is more efficient
and nevertheless exactly meets the demands of practical applica-
tions. The acceleration is achieved by the use of surface-based
bounding object hierarchies and a kind of lazy evaluation: we
focus on intervals whose estimation contribute to the surface of
the present approximation11.

For a clear understanding of the basic principles, we first
explain the computation of the reachable space of the reference
point of a body that is not associated with constraints. We then
show that this method can be extended to obey closed-loop con-
straints and to work with regard to complex geometric shapes.

4.1 The Case of Tree-Structures
Let t : Rn �! R3 be the translational part of the forward

kinematic for some body B that is part of a tree-structured mech-
anism. As already explained in subsection 2.3.1, the reachable
space of the reference point of B is exactly given by the range
of values t(D). In the case of a tree structure, D 2 In represents
the space of all admissible parameters. In order to approximate
t(D) we subdivide D into a set L of intervals X1; : : : ;Xl with
D=[X2LX and estimate the range of values of t over Xi by com-
puting It(Xi). The inclusion property and inclusion-isotony of It
imply t(D)� [X2LIt(X)� It(D). This procedure is sketched in
figure 1.

11This may lead to the overlook of voids that are contained inside R(B). Thus
it is not suited for the volume-based case.
6

D t(D)

It

Figure 1. The parameter space D is subdivided (left) and estimated by

an inclusion function It yielding an approximation of t(D) (right). Various

shadings symbolize different generations of intervals.

Obviously t is Lipschitz, so we also have a constant L with
w(It(X)) � L �w(X) 8X 2 I(D). Hence for any δ > 0 there ex-
ists a subdivision L of D such that w(It(X)) � δ 8X 2 L holds.
Then the minimal distance between some point of our approxi-
mation [X2LIt(X) and t(D) is at most

p
3δ. Thus we have an

ε-approximation12 if we set ε :=
p

3δ. We can also say that the
approximation converges to t(D) with w(X)�! 0 8X 2 L.

As already mentioned an important accelerating factor is the
disregard of intervals whose estimation does not contribute to the
outer surface of the present approximation. In other words: we
subdivide an interval X 2 L only if one of the faces of It(X) is
part of the outer surface of the present approximation. Observe
that an interval once neglected may contribute to the outer sur-
face of a refined approximation. We get the following termina-
tion criterion for our algorithm

8X 2 L : It(X)\∂o([X2LIt(X)) 6= /0 : w(It(X))� ε=
p

3 (10)

with ∂o as the denotation for the outer surface of a compact set13.
Above we use the addendum ”outer”, because the range of

any interval X can contain voids bounded by surfaces that may
not be found unless X is subdivided further. Thus we are not
guaranteed to find any ”inner” surfaces when using lazy evalua-
tion, so we restrict ourselves to the ”outer” surface. To be more
precise, what we compute is the outer hull (envelope) of an ε-
approximation14. See the left picture in figure 2.

Since t(D) is a compact set and can be represented by its
boundary, we may in addition exclude any interval X which pro-
duces no boundary points, i.e. t(X)\ ∂t(D) = /0. We check this
by using observation (4) in conjunction with interval analysis. In
the same way we get inclusion functions for the forward kine-
matics and for constraints, we pre-compute inclusion functions
for the determinants of any maximal submatrix of the jacobian

12This is equivalent to δH ([X2LIt(X); t(D))� ε where δH denotes the Haus-
dorff distance.

13We could also use the diameter in (10): diam(It(X))� ε.
14This should not to be mixed up with the ε-approximation of the outer surface.
Copyright  2001 by ASME

Figure 2. The effect of lazy evaluation (left) and the additional omission

of intervals that produce no boundary points (right).

of t. This effort is worthwhile only for inputs with a moderate
number of parameters n � 3. In this case the number of 3� 3
submatrices of the jacobian Jt is

�n
3

�
.

Let Mi be the i-th of these matrices and IjMij an inclusion
function for its determinant. In order to exclude an interval X
with X \ ∂D = /0, we test these functions with the argument X .
As soon as we have 0 =2 IjMij(X) for one of these functions, we
know that the corresponding submatrix is non-singular for all pa-
rameters φ 2 X . So X does not produce any boundary points. It
holds for X \∂D = /0

9Mi : 0 =2 IjMij(X) (11)

) It(X)\∂t(D) 6= /0

If X lies on the surface of D, the situation is slightly more diffi-
cult. This is described in (Fuhrmann, 2001). The result of this
effort is illustrated in figure 2.

Algorithm EnvelopeOfReachableSpace (ε;D; It)
Input. Tolerance ε> 0, starting interval D2 In, interval function

It
Output. List L

1 X := D; L := Lo := X ;
2 do
*
3 for some X 2 Lo with w(It(X))> ε=

p
3

4 delete X from L;
5 bisect X into X1 and X2 parallel to its longest edge;
6 for i = 1;2 do
7 if Xi may produce surface points, i.e. (11) holds

then insert Xi into L;
8 update Lo := fX 2 L j It(X)\∂o([X2LIt(X)) 6= /0g;
9 until termination criterion (10) holds;
10 return Lo;

Algorithm 1
7

We conclude: The outer surface of [X2LoX computed by
algorithm 4.1 is the outer surface of an ε-approximation to t(D).
The final approximation consists of an estimation of all relevant
intervals. The boxes on its outer boundary are small enough, i.e.
(10) holds. We precisely investigate the correctness and running
time of the algorithm in (Fuhrmann, 2001).

The computation of the surface of a set of boxes, also called
their contour, is described in (Preparata and Shamos, 1985) for
the two-dimensional case. To realize step 8, it is not necessary to
compute the entire surface each time. We use the following idea
in our implementation. The present set of boxes is maintained in
a hierarchical data-structure in the form of coordinates, e.g. an
oct-tree or segment-trees. If a box b has to be deleted, we delete it
from this data-structure and consider all boxes that intersect with
b as new boxes. For a new box b, we have to determine whether
it contributes to the present surface. The data-structure is used to
find all boxes having a non-empty intersection with b. All these
boxes ”cut away” a portion of the surface of b. Obviously, b
contributes to the surface and belongs to Lo, if there is a portion
of ∂b that does not lie in any other box.

This procedure does not distinguish between inner and outer
surface15, but it is efficient regarding possible alternatives and
does not affect the correctness of the algorithm. Figure 3
shows the result of our implementation applied to open kinematic
chains.

4.2 How to Handle Constraints
If the mechanism has closed kinematic loops, we pre-

compute a set of constraints c : Rn �! Rm as described in sub-
section 3.2. These constraints define the set of admissible pa-
rameters A := fφ 2 D 2 In j c(φ) = 0g. For c is highly nonlin-
ear in general, it is a very hard task to find some elements of A,
nothing to say of exactly determining A entirely. The idea is to
approximate A by using interval methods as above. For a better

15Lo may also contain intervals X for which It(X) contributes to the surface of
a void.

Figure 3. Left: A screw joint serves as a simple example to clarify the

correctness of the method. Right: An example with 4dof.
Copyright  2001 by ASME

understanding we first explain this as an independent procedure
which may take place as a pre-computational step. The result is
a set A� I(D) of intervals with the following properties.

(i) All admissible points are enclosed: A�[X2AX
(ii) No constraint is violated more than εc:

8φ 2 X 2A :�εc � ci(φ)� εc 8i = 0; : : : ;m�1

The set A is computed by generating an inclusion function Ic
which can be used to test an interval for being not admissible.
We have

0 =2 Ic(X)) @φ 2 X : c(φ) = 0

However 02 Ic(X) does not imply that X contains any admissible
point. In order to compute A, we successively subdivide D into
a list L of intervals as above and exclude all intervals X 2 L :
0 =2 Ic(X). We satisfy specification (ii) by using the termination
criterion 8X 2 L : w(Ic(X))� εc.

There is no reason why this procedure and algorithm 4.1
should not work simultaneously. This is even more efficient be-
cause any interval that is neglected by lazy evaluation also does
not have to be tested for validity further. The observing reader
might already have noticed that in general forward kinematics
and constraints neither depend on all parameters of the system
nor do they exactly depend on the same parameters. Let F de-
note the (high-dimensional) interval that lies in D and represents
the parameter space of the variables that actually occur in the
expression f. In the same way let C be the interval defined by
joint limits for the variables in c. Both intervals have a common
sub-interval S := F \C, for f and c must have some parameters
in common.

We now consider algorithm 4.1 as working on F instead of
D and we call an interval X 2 I(F) temporarily admissible if

9Y 2 I(C) : projS(Y)� projS(X) (12)

where projS(X) denotes the projection of an interval X onto the
subspace S. We call X εc-admissible if (12) holds together with
w(Ic(Y)) � εc. In practice the kinematic loops have to be closed
very accurately, so we may expect the relation εc < ε. This means
we have to subdivide C and F with different granularities. We ex-
tend algorithm 4.1 at the place ”*” by the following procedure. It
maintains a list LC that represents a sufficiently fine subdivision
of C excluding irrelevant intervals. All intervals X 2 Lo being
not temporarily admissible are removed. Together with an
extension of termination criterion (10), this ensures that C is sub-
divided faster than F, resulting in εc-admissible intervals where
they are needed. We use

8X 2 L : It(X)\∂o([X2LIt(X)) :

w(It(X))� ε ^ X is εc-admissible (13)
8

Algorithm *

1 do
2 choose Y 2 LC : 9X 2 Lo : projS(X)� projS(Y) with

maximal width and delete Y from LC;
3 bisect Y into Y1 and Y2 parallel to its longest edge;
4 for i = 1;2 do
5 if 0 2 Ic(Yi) then insert Yi into LC;
6 until @X 2 Lo : 9Y 2 LC : projS(X)� projS(Y);
7 forall X 2 Lo do
8 if X not temporarily admissible then delete X from L;Lo;

Algorithm 2

Here, the deletion of intervals that do not produce boundary
points in line 7 of algorithm 4.1 can be retained according to the
same principle (11). As we see by (5) we now have to consider
submatrices of a higher dimension. This results in more complex
formulae and the inclusion function may be very over-estimating
until the intervals are very small. Hence we use a more sophisti-
cated method for analyzing the minors, described in (Fuhrmann,
2001). We implemented the above algorithm and applied it suc-
cessfully to different problems as can be seen in figure 4.

4.3 How to Handle Complex Geometries
So far, the above method is very general referring to the

kinematic structure, but it only computes the reachable space
for a singular point of a part. The next step is the extension to-
wards sets of triangles that are hierarchically represented by a
pre-computed sphere-tree. For a better understanding we post-
pone the usage of the hierarchy and first explain the basic case.

Figure 4. The reachable space of the reference point of a part of a 7dof

closed-loop mechanism (simple model of a steering column).
Copyright  2001 by ASME

4.3.1 The Primitives Let the forward kinematic of a
body B be given by (1) and let one of its triangles T be given by
a point p 2 R3 and two vectors a;b 2 R3 . We then are able to
derive this equation16 for the forward kinematic of each point of
T

tT (α;β;φ) := R(φ) � (p+αa+(1�α)βb)+ t(φ) (14)

with α;β 2 [0;1]. By this marginal extension of our present
method and its application to each triangle of B, we could already
compute the reachable space R(B). With increasing number of
triangles the support of the computation by the pre-computed
sphere-tree becomes advantageous.

4.3.2 Building and Using a Sphere-Tree Assum-
ing the geometry of each body B is described by its surface in
the form of a set of triangles T for which we pre-computed a
bounding object hierarchy based on spheres. The idea of apply-
ing a sphere tree is to compute the reachable space of a coarse
approximation of B by spheres. This approximation is refined,
i.e. the hierarchy is stepped down, only at spheres whose estima-
tion contributes to the surface. In this way we find the relevant
subsets of T with regard to a considered interval of parameters.
Thus the usage of the bounding object hierarchy is again based
on lazy evaluation17. Spheres have the advantage of rotational
invariance, such that only the translational part of the forward
kinematic has to be estimated.

We first sketch the recursive top-down generation of a binary
sphere-tree for T. Let the node S of the hierarchy be represented
by a sphere which encloses T0 � T. We cut T0 into two disjunct
subsets T01[T02 = T0 of almost equal complexity in a reasonable
manner and generate two sons S1;S2 of S. For i = 1;2 the node
Si is represented by the smallest enclosing sphere for the vertices
of T0i; we propose the usage of the algorithm of (Welzl, 1991) for
this computation. If there is only one triangle T in T 0

i left, the
node Si is called leaf and is represented by T .

Usually each sphere is stored by its radius and its center
point p 2 R3 relative to the respective body reference frame. In
our context we have to pre-compute the translational part of the
forward kinematic of each center point which is given by

tp : Rn �! R3 ; tp := R(φ)p+ t(φ)

using the notations of (1). Thus the geometry is represented by a
binary tree in which each node stores a forward kinematic and a
radius. Each leaf additionally contains a triangle.

16The triangle T is given by p+αa+βb with α;β 2 [0;1] and α+β� 1. So
the (α;β)-space is the basic 2-simplex and we have to re-parameterize using�

α
β

�
:=

�
α0

(1�α0)β0

�
with α0

;β0
2 [0;1]

17We see no way to use the hierarchy in a more classical fashion, e.g. a disre-
gard of complete subtrees controlled by cut-off tests.
9

Next we explain how to estimate the reachable space of a
sphere S given by its radius r and its forward kinematic tp. Given
an interval X 2 I(F) of admissible parameters, we compute the
box Itp(X) � R3 and move its faces outwards by r. We denote
the result by E(S;X). Observe that it contains the reachable space
over X of all triangles enclosed by S.

Now assume we want to estimate the reachable space of B
over the fixed interval X by using the sphere-tree. This may be
realized by applying the ideas already used in 4.1. We maintain a
list of estimations, and in each iteration we choose and delete the
element E(S;X) with the maximal width of all estimations that
contribute to the outer surface of the present approximation. If S
has two sons S1 and S2, we compute E(S1;X) and E(S2;X) and
insert them into the list. If Si represents a leaf of the sphere-tree,
we compute the estimation E(T;X) given by (14) for the triangle
T stored in this leaf. The iteration terminates if all estimations
that lie on the surface are generated from triangles. This gives us
a good impression on how the idea of lazy evaluation is used in
the context of sphere-trees to increase efficiency.

The outer surface of R(B) is approximated by combining
this idea with algorithm 4.1. Instead of considering a fixed in-
terval, the idea is to perform some iterations of algorithm 4.1
to subdivide F and C and to test the given constraints. The re-
sulting subintervals are then estimated in the manner described
above and the process is iterated.

So, abstractly speaking the over-all algorithm has to pass
through three hierarchies18 simultaneously. It is not clear
through theoretical considerations how to assess the respective
hierarchy, i.e. how fast it should be traversed. This has to be
evaluated experimentally by a performance analysis. Intuitively
the best way seems to be a uniform traversal, such that the leafs
of the sphere-tree are reached at the same time as the granularity
of the subdivisions guarantees the given tolerances.

4.3.3 Self-Collisions A further interesting topic is the
computation of the reachable space sensitive to self-collisions
of the mechanism19. We could use our methodology to pre-
compute an approximation to the set of parameters that produce
self-collisions, but unfortunately this is very time-consuming.
To this purpose we would investigate all pairs of bodies B;B0,
their corresponding sphere-trees and the union of the parameter
spaces of their forward kinematics. Regarding two estimations
E(S;X);E(S0;X), the idea is to subdivide X and to descend in
the trees at S and S0 only if the estimated intervals intersect.

18These are the parameter spaces F and C and the sphere tree
19in the sense that the reachable space is computed only considering non-

colliding configurations.
Copyright  2001 by ASME

5 Conclusion and Future Work
We have presented a method for computing a ”minimal” en-

velope that contains a given mechanism in all its admissible con-
figurations. To be precise, the envelope is the outer surface of
an ε-approximation of the reachable space of the mechanism as
defined in subsection 2.2. The method is very general: it handles
all mechanisms that can be defined in the sense of multibody
systems; the geometry of a part is expected to be representable
as a set of triangles. The approximation is conservative and glob-
ally correct, i.e. it always contains the reachable space and any
desired accuracy can be achieved, only limited by computation-
time and -space. Our present implementation shows to us, that
the method can be implemented to work very robustly. We can
also use our approach to approximate the swept volume of a sin-
gle object with any granularity: Its trajectory has to be given as
a parameterized curve and then is treated as a special joint (a
guide) subject to which the object is movable.

The critical point of our method is surely its efficiency, even
if we already try to exploit several algorithmic and mathematical
properties of the problem. Hence our future work will mainly
concentrate on improving the running-time of the algorithm. We
enumerate some topics that have to be considered and experi-
mentally evaluated by an implementation.

1. There are inclusion functions with a smaller excess-width,
e.g. the mean value form (7). However their evaluation of-
ten is more time-consuming, so a clever trade-off has to be
found.

2. The simultaneous computation for many bodies could be
faster than considering each body individually, for there
are many indications that the running-time of our algorithm
strongly depends on the size of the approximated surface.
Which number of bodies that maximizes the efficiency?

3. Certain closed-loop systems commonly occur as sub-
mechanisms, e.g. four-bar mechanisms. For such cases we
suggest the use of pre-computed forward kinematics that re-
dundantize additional constraints.

6 Acknowledgements
The authors would like to thank Prof. Dr. Günter Hotz, head

of the Insitute for Applied Mathematics and Computer Science,
Universität des Saarlandes, Saarbrücken, for his encouragement
and support on this ongoing research.

REFERENCES
Abdel-Malek, K., Adkins, F., Yeh, H. J., and Haug, E. (1997). On

the determination of boundaries to manipulator workspaces. Robotics
and Computer-Integrated Manufacturing, 13:63–72.

Abdel-Malek, K., Blackmore, D., and Joy, K. (2000). Swept vol-
umes: Foundations, perspectives and applications. submitted to Interna-
tional Journal of Shape Modeling.
10
Abdel-Malek, K., Yeh, H. J., and Keirallah, N. (1999). Workspace,
void and volume determination of the general 5dof manipulator. Me-
chanics of Structures and Machines, 27:91–117.

Asaithambi, N. S., Zuhe, S., and Moore, R. E. (1982). On comput-
ing the range of values. Computing, 28(3):225–237.

Blackmore, D., Leu, M., and Wang, W. (1992). Classification and
analysis of robot swept volumes. In Proc. Japan USA Symposion on
Flexible Automation, Vol. 1, pages 69–75.

Fuhrmann, A. (2001). Methoden zur Berechnung des erreichbaren
Raumes beliebiger Mechaniken. Technical report, DaimlerChrysler
Forschung und Technologie, Ulm, Germany.

Fuhrmann, A., Hotz, G., Sauer, J., and Schömer, E. (2000).
Methodik zur Berechnung des maximal benötigten Bauraumes be-
liebiger Kinematiken. Patent description submitted to Intellectual Prop-
erty Management of DaimlerChrysler AG.

Gaganov, A. A. (1985). Computational complexity of the range of
the polynomial in several variables. Cybernetics, pages 418–421.

Gupta, K. C. (1997). Mechanics and Control of Robots. Mechani-
cal Engineering Series. Springer, Berlin.

Hansen, E. (1992). Global Optimization Using Interval Analysis.
Dekker, New York.

Haug, E. J. (1995). Numerical algorithms for mapping bound-
eries of manipulator workspaces. Advances in Design Automation,
69(2):447–459.

Hubbard, P. M. (1995). Collision detection for interactive graphics
applications. IEEE Transactions on Visualization and Computer Graph-
ics, 1(3):218–230.

Kumar, A. and Waldron, K. J. (1981). The workspaces of a me-
chanical manipulator. Journal of Mechanical Design, 103:665–672.

Mehlhorn, K. (1984). Data Structures and Efficient Algorithms.
EATCS Monographs. Springer, Heidelberg.

Moore, R. (1963). Interval Analysis. Prentice-Hall, Englewood
Cliffs, NJ.

Preparata, F. P. and Shamos, M. I. (1985). Computational Geome-
try: An Introduction. Springer-Verlag, New York, NY.

Rastegar, J. and Deravi, P. (1987). Methods to determine
workspace, its subspaces with different numbers of configurations and
all the possible configurations of a manipulator. Journal of Mech. Mach.
Theory, 22(4):343–350.

Samet, H. (1990). The Design and Analysis of Spatial Data Struc-
tures. Addison Wesley, Boston.

Wang, J. Y. and Wu, J. K. (1993). Dextrous workspaces of manip-
ulators II: Computational methods. Mechanics of Structures and Ma-
chines, 21(4):471–506.

Wang, W. P. and Wang, K. K. (1986). Real-time verification of
multi-axis nc programs with raster graphics. In Proc. IEEE Int. Conf. on
Robotics and Automation, pages 166–171.

Welzl, E. (1991). Smallest enclosing disks (balls and ellipsoids).
Lecture Notes in Computer Science, 555:359pp.
Copyright  2001 by ASME

	DAC TOC

