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Abstract

We present a heuristic approach to geometric path
planning with movable obstacles. Treating movable
obstacles as mobile robots leads to path planing
problems with many degrees of freedom which are
intractable. Qur strategy avoids this computational
complexity by decoupling the whole motion plan-
ning problem into a series of tractable problems,
which are solved using known path planning algo-
rithms. The individually computed solutions are
then coordinated to a path plan. This method re-
sults in a powerful and practicable strategy for path
planning with movable obstacles, which can be ap-
plied using a wide variety of known motion planning
algorithms.

1 Introduction

Objects in geometric path planning problems are
usually divided into moving objects and fized ones
called obstacles. In a problem description the mov-
ing objects and the obstacles are given - usually as
polygons or polyhedra - together with their posi-
tions and orientations. For the moving objects goal
configurations are specified additionally to complete
the problem description.

Much work has been done to solve this kind of
problems (— classical path planning algorithm
CPPA). In early papers it has been shown that
the problem is decidable for an arbitrary number of
moving objects [10]. In subsequent work the focus
of interest has been on two classes of algorithms.
Firstly complete algorithms have been developed
which all convert the path planning problem for ob-
jects to a path planning problem for points in con-
figuration space. They vary widely in the ability to
handle different degrees of freedom, the represen-
tation of configuration space and the efficiency to
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compute 1t. Their common point i1s the ability to
decide whether the given path planning problem is
solvable with the feasible degrees of freedom. Ex-
amples for those algorithms are in [4, 5, 7]. They
suffer from the major drawback that only small
problems can be solved this way. The second class
are heuristic algorithms [1] which compute the con-
figuration space only partially and are able to han-
dle more degrees of freedom or more complex scenes.
But these algorithms cannot decide whether there
is a solution to the given problem.

Both classes of algorithms do not take into ac-
count that usually the objects in a scene cannot be
strictly divided into moving objects and fixed ob-
jects. In real world most obstacles are not fized but
movable. A human planner would take into account
that he can move those obstacles in order to solve
his problem. This third class of objects which do
not have to but can be moved might theoretically
be treated as moving objects. Typically there are
many movable obstacles but only very few of them
have to be moved to solve the path planning prob-
lem. Treating them as moving objects makes those
problems intractable.

In spite of the observation of movable objects in
reality only little research has been done on mo-
tion planning with movable obstacles. Wilfong pre-
sented an approach to this kind of problem in [12],
but he considered only a 2-dimensional workspace
und his focus was the grabbing and pushing of ob-
stacles.

Our main interest is to detect, whether obstacles
have to be moved in order to give way to the moving
object and how these motions can be computed and
coordinated to a path plan. For that we present a
heuristic strategy which decomposes the complex
problem into a series of tractable problems whose
solutions are combined to an integrated solution of
the whole problem. The strategy is applicable to 2-
and 3-dimensional workspaces und uses four major
steps:

1. Compute paths for the moving objects which
are collision-free with regard to the fixed ob-



jects.

2. Determine the set of movable objects obstruct-
ing the previously computed paths.

3. Independently compute paths for the obstruct-
ing movable objects which clear the paths of
the moving objects.

4. Coordinate the motions of the obstructing
movable objects.

This decoupled planning strategy has firstly been
developed in [2]. A similar idea for multiple moving
objects has been used in [9].

2 Problem Definition and Re-
sults

Our problem can be specified as follows: Given a set
0° = {o0],...,05} of static obstacles, a set OM =
{o¥,...,0M} of movable obstacles and a moving
object o™ with start configuration cgyqr; and goal
configuration cg.47, compute a collision-free motion
pM for oM with respect to O° and a motion plan
MP, i.e. a sequence of coordinated collision-free
(with respect to all objects in the scene) motions
for objects in OM | so that p™ becomes collision
free considering O° U OM after executing M P.

We present a general strategy which is applicable
to a wide variety of CPPAs. It enlarges in a practi-
cal manner the abilities of the CPPA without using
impracticable methods of path planning for multi-
ple moving objects. The CPPA is only required to
compute a path map without having a goal config-
uration. The path map i1s used to coordinate the
motions of the different movable obstacles spatially.

The strategy can easily be adapted to path plan-
ning algorithms for

(a) dynamic environments and
(b) multiple moving objects

In the following we describe the four major steps of
the strategy in more detail and illustrate them with
examples.

3 The strategy
3.1 Path Planning for the Moving
object

In a first step the movable obstacles are ignored and
the classical path planning problem for the moving

object is solved considering only the static obsta-
cles.

For this problem any known CPPA can be used
such as [4, 5, 7]. The only result relevant for future

computation is the description of the path p™ for
M
oM.

3.2 Determining the Obstructing

Movable Obstacles

With the path from step 3.1 we could now use stan-
dard collision detection techniques to determine the
obstructing movable obstacles. The result would be
a set O%l C OM of colliding movable obstacles,
but we would not have any information on where to
place the obstacles from O%l in order to clear the
path for o™.

To get this type of information we take a closer
look at the result of step 3.1. The moving obsta-
cle together with the motion form a 4-dimensional
object-time-space. A collision-free path for o™ with
respect to OM is equivalent to the fact that no ob-
stacle from OM has a non-empty intersection with
oM at any time of the path. So we can use the 3-
dimensional projection of object-time-space on the
3-dimensional object-space called swept volume to
compute the obstructing movable obstacles. Fur-
thermore we get a representation of the region in
object-space which has to be cleared and this can
be used to efficiently determine goal positions for
the obstructing movable obstacles.

Computing the exact swept volume for all type
of possible movements (pure translations, pure ro-
tations, mixed translations/rotations) is difficult
and not very helpful, because most of the intersec-
tion detection algorithms in computational geome-
try are based on a polyhedral boundary representa-
tion of the objects. The swept volume forms only in
the case of a pure translation a polyhedral region,
pure rotations create hyperbolic surfaces and mixed
translations/rotations, free formed surfaces.

So we compute only for pure translations the ex-
act swept volume and for rotations and mixed trans-
lations/rotations we approximate the exact swept
volume by a polyhedron which safely includes the
real swept volume. For details on the computation
techniques refer to [2].

The polyhedral representation of the swept vol-
ume can now be used to determine the set O%l C
OM with standard polyhedron intersection algo-
rithms (see [11]).

The result of this step is the set O, C OM and

col
the polyhedral representation of the volume swept



by oM.

3.3 Computation and Coordination
of Clearing Paths

The set O%l is the set of movable obstacles which
definitely have to be moved to clear the precom-
puted path for o™ . Although O%l is usually only
a small part of all movable obstacles and the com-
putational complexity is substantially reduced, it is
usually big enough to make a complete simultaneous
computation and coordination of clearing paths for
all obstacles in O%l intractable. That’s why we also
use a decoupled planning strategy for this problem
in order to make the remaining computational com-
plexity tractable. The result is a motion planning
problem without goal configuration for the moving
object. But we have a polyhedral region which has
to be cleared by the moving obstacles, i.e. the com-
plement of the swept volume determines the region
where each moving obstacle has to be completely in

at the end of its clearing path.

3.3.1 Determination of Goal Configurations

Most of the known motion planning algorithms
compute either a direct representation of the config-
uration space (C-space) for the moving object as [7]
or discretizations of C-space like visibility graphs,
Voronoi-diagrams or probabilistic roadmaps.

In case of a direct representation of C-space the
algorithms are able to compute the intersection of
different regions so that the free configuration space
(free-space) and the free configuration space con-
cerning only the polyhedral approximation of the
swept volume as obstacles (free-S-space) can be
computed separately and the intersection of free-
space and the free-S-space form the set of all possi-
ble free goal configurations of the obstructing mov-
able obstacle. In this region either randomly cho-
sen points or special sample points can be used as
goal configurations for the classical motion planning
algorithm. In case of a discretization of C-space
standard polyhedron intersection algorithms can be
used to classify points in C-space as possible free
goal configurations.

The computation and coordination of clearing
paths can be done in two structurally different ways:

(1) Heuristic computation and coordination in one
single step

(2) Coordination after computation of indepen-
dent clearing paths

The first is the faster but less powerful possibility to
solve the path clearing problem, the second requires
more computational effort but can solve more kinds
of problems.

3.3.2 Heuristic Computation and Coordi-
nation in One Single Step

Besides complete simultaneous computation and co-
ordination of clearing paths which i1s known to be
intractable there are some substantially faster but
less powerful strategies to solve the clearing path
problem:

(1) Known heuristic motion planning algorithms
Jor mulliple moving objects as in [3] which can
be modified concerning the goal configurations
of the objects

(2) A priori motion order

This order can be intrinsic to the scene or cho-
sen interactively or randomly. It creates a se-
quence of classical motion planning problems
where all obstacles are static and in each stage
the obstructing movable obstacles which have
already moved are considered in their goal con-
figuration whereas those which still have to be
moved are considered in their original configu-
ration.

The computed sequence of motions forms in
canonical manner a path plan which clears the pre-
computed path for the moving object 0.

This method is a simple straightforward method
of motion coordination and succeeds in realistic
scenes as shown in figure 1, but there are many
situations where more sophisticated coordination
schemes have to be used (see figures 2,3,4).

3.3.3 Coordination after Computation of
Independent Clearing Paths

Known heuristic motion planning methods for mul-
tiple moving objects suffer from the major drawback
that they are not able to revise computed paths ef-
ficiently. We overcome this problem by computing
the paths independently and using the discretiza-
tion of free-space (as visibility graph, voronoi dia-
gram or probabilistic roadmap) to chronologically
and spatially coordinate the different paths. This
idea has also be suggested by Overmars (see [9]).

Computation of Clearing Paths

We do this by considering each obstructing movable
obstacle by his own and compute an independent
(of the rest of the obstructing movable obstacles)



clearing path. Thereby we consider the set of static
obstacles O, the non-obstructing movable obsta-
cles OM \ OM, and the moving object o™ in start
configuration as obstacles in the scene. This results
in a classical motion planning problem. To coor-
dinate the independently computed paths spatially
the discretization of the free-space is also stored as
a result besides the computed path.

Coordination of Clearing Paths

The paths are all independently computed, so that
they have to be coordinated to build a collision-free
path plan which clears the path of the moving ob-
ject. The coordination can be realized as pure mo-
tion ordering, time coordination of paths or time
and local coordination of paths. There are different
ways to realize the coordination:

1. Motion ordering
2. Chronological coordination
3. Chronological and spatial coordination

Motion Ordering

To decide whether there is a motion order for the
clearing paths we compute a directed graph called
ordering graph.

Definition .1:
Given a set S = {s1,...,s,} of pairs (oM, p;) of
moving objects o and clearing paths p;, the order-

ing graph OG = (V, E) is defined as follows:

Vv = 8
E = {(si,s;)|0M has to be moved before oj»w}

Iff the ordering graph is acyclic, the motions of the

oM can be ordered collision-free by topologically

2
sorting the graph. For each pair of objects (0, 05»”)
the edges of the ordering graph can be computed us-
ing standard collision detection techniques:

If oj»w obstructs the path of o} in its start config-

uration, then oj»w has to be moved before 0¥ and

hence an edge (oéw,oM) is added to the graph. If

i
oj»w obstructs the path of oM in the goal configura-

tion, then oM has to be moved before o

J
edge (oM, oj»w) is added to the graph.
The topological ordering of the motions defines one
possible clearing path plan.
Motion ordering is applicable to many realistic
scenes as shown in figures 1 and 2, but there are sit-
uations where spatial coordination is required (see

and an

figure 4) or more sophisticated chronological coor-
dination of paths is needed (see figure 3).

Chronological (and Spatial) Coordination

Pure motion ordering is only a straightforward
method of motion coordination because the motion
for each obstacle is performed at one time. This
is sufficient for problems where the clearing paths
do not interfere with each other very much. Gener-
ally a more sophisticated coordination strategy is
required. We meet this demand by timely (and
locally) coordinating the clearing paths. The dis-
cretization of free-space (if computed by the plan-
ning algorithm) is used to locally coordinate the
clearing paths. The decomposition of the paths into
path components is used to chronologically coordi-
nate the paths. We introduce the datastructure of
coordination graph which is a superset of Overmars’
super-graph (see [9]):

Definition .2:
Given a set of simple roadmaps R = {(Vi, Ey)|i =
1,...,n}, the corresponding coordination graph

CG = (V, E) is defined as follows:

V = Vix...xV,
Vi (vi,wi) ek, A
E = (v,w) | 3 coordinated motion for

M
o from v; to w;

The definition is general concerning both the
roadmap (simple path or complete discretization of
free space) and the coordination scheme. Overmars
suggested a coordination which allows only one ob-
ject to move at one time. We present two more
techniques here which serve the purpose of coordi-
nating the clearing paths:

(1) Multiple moving objects without chronological
coordination

A subset Sy C S can be moved collision-
free without velocity coordination. That means
that the objects can be moved at one time or in
any order. This can be computed using stan-
dard motion planning techniques (see [11]) or
reusing the algorithm computing the swept vol-
ume of moving objects. A motion is possible if
there is no intersection between any two swept
volumes. (Note that the objects which do not
move in one step have to be considered both us-
ing collision detection techniques as static ob-
jects and the swept volume technique with the
object as swept volume.)

(2) Multiple moving objects with chronological co-
ordination



Kant and Zucker presented in [6] a technique to
heuristicly solve the motion planning problem
with multiple moving objects. They divided
the planning process in two major steps. In the
first one they computed individually the paths
for the moving objects and in the second they
chronologically adapted the paths by comput-
ing a velocity profile for each object. The sec-
ond step can here be used to compute a chrono-
logical coordination for the objects moving in
this step.

To coordinate the moving objects it has firstly
to be determined whether they can be moved
individually without collision considering the
objects which do not move in this step. After
this the second step of Kant and Zucker’s tech-
nique can be used to compute a velocity profile
for each moving object to chronologically coor-
dinate them.

Those techniques are able to solve more compli-
cated coordination tasks, too (see figure 3 and 4).

Speeding up the Graph Search

With the technique that only one object can be
moved at a time Overmars proved empirically that
it 1s practicable to compute the whole coordination
graph in advance. If the coordination schemes are
more general, i.e. more than one object can be
moved at a time with or without chronological or
spatial coordination, the coordination graph can be
very big and it may be intractable to compute the
whole graph.

In this case the A* algorithm can be used to scan the
graph without computing it in advance (see [8]). As
a criterion for the optimal solution the minimization
of the sum of all path lengths is used. In order to
find the optimal solution the A* algorithm needs
an approximation of the remaining path length
which safely underestimates the real remaining path
length. So we define a distance measure (e.g. eu-
clidean distance) on the individual roadmaps of
each moving object and we compute for each pair of
nodes (v, w) the shortest distance d(v, w) using e.g.
the all-pair-shortest-path algorithm of Floyd and
Warshall. Using this distance-matrix we can deter-
mine for each node v the minimal distance to a safe
goal node dpin(v) = min{d(v,w)lw € SGN(R)},
where SGN(R) is the set of all safe goal nodes of
a roadmap R. We combine these measures to an
overall measure in the coordination graph using the
sum of all individual measures. So the estimation
of the remaining path-length for a node v of the

coordination graph is
i=1

This distance estimation takes into account that
an object aims at varying goal positions when it
is forced to avoid other objects during coordinated
motion.

Coordination Path — Path Plan

The computed coordination path now has to be in-
terpreted as a path plan. Each edge of the coordi-
nation path stands for the movement of one or more
object(s) along an edge of the individual roadmap
which may be chronologically coordinated by ve-
locity profiles. So the whole coordination path de-
scribes a collision-free path plan for the obstructing
movable obstacles to clear the precomputed path
for the moving object.
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Figure 2: Solution is possible
with motion ordering

Figure 1: Solution is possible without motion coordination

Figure 3: Solution is impossible
with motion ordering (requires
spatial coordination)

Clearing movement

Clearing movement

Clearing movement Clearing movement

Figure 4: Solution is only possible with spatial and chronological coordination




