
An Exact and Efficient Approach for

Computing a Cell in an Arrangement of

Quadrics ?

Elmar Schömer

Johannes Gutenberg-Universität Mainz, Institut für Informatik, 55099 Mainz,
Germany, schoemer@informatik.uni-mainz.de

Nicola Wolpert

Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken,
Germany, wolpert@mpi-sb.mpg.de

Abstract

We present an approach for the exact and efficient computation of a cell in an
arrangement of quadric surfaces. All calculations are based on exact rational alge-
braic methods and provide the correct mathematical results in all, even degenerate,
cases. By projection, the spatial problem is reduced to the one of computing planar
arrangements of algebraic curves. We succeed in locating all event points in these
arrangements, including tangential intersections and singular points. By introducing
an additional curve, which we call the Jacobi curve, we are able to find non-singular
tangential intersections. We show that the coordinates of the singular points in
our special projected planar arrangements are roots of quadratic polynomials. The
coefficients of these polynomials are usually rational and contain at most a single
square root. A prototypical implementation indicates that our approach leads to
good performance in practice.

1 Introduction

Computing arrangements of curves and surfaces is one of the fundamental
problems in different areas of computer science like solid modeling, compu-
tational geometry, and algebraic geometry. As long as arrangements of lines

? Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET
Open) Project under Contract No IST-2000-26473 (ECG – Effective Computational
Geometry for Curves and Surfaces)

Preprint submitted to Elsevier Science 3 January 2006

and planes defined by rational numbers are considered, all computations can
be done over the field of rational numbers. This avoids numerical errors and
leads to exact mathematical results as well as to good running time behaviors.

As soon as higher degree algebraic curves and surfaces are considered, in-
stead of linear ones, things become more difficult. In general the intersection
points of two planar curves or three surfaces in 3-space defined by polynomi-
als with rational coefficients have irrational coordinates. That means instead
of rational numbers one now has to deal with algebraic numbers. One way
to overcome this difficulty is to develop algorithms that use floating point
arithmetic. These algorithms are quite fast but in degenerate situations they
can lead to completely wrong results because of approximation errors, rather
than just slightly inaccurate outputs. Assume for example that for two planar
curves one is interested in the number of intersection points. If the curves have
tangential intersection points, numerical inaccuracies can lead to a wrong out-
put.
A second approach besides using floating point arithmetic is to use computer
algebra methods, based on exact arithmetic, and thus guarantee the correct-
ness of the results. Algebraic geometry provides a rich theory for analyzing
degenerate geometric situations, but one has to be careful in choosing only
those techniques which perform well in the problem-specific context and which
yield acceptable running times when compared to the floating point approach.

G

R

B

R

Fig. 1. An arrangement of three ellipsoids. The ellipsoids B and G intersect the
ellipsoid R in the middle in two spatial curves running on the surface of R.

We consider arrangements induced by quadric surfaces in 3-dimensional space.
Quadric surfaces, or quadrics for short, are defined as the set of roots of
quadratic polynomials. For example, the ellipsoid R in Figure 1 is defined by
the polynomial

R(x, y, z) = 27x2 + 62y2 + 249z2 − 10.

A set of surfaces partitions the affine space in a natural way into four different
types of maximal connected regions of dimensions 3, 2, 1, and 0 called cells,
faces, edges, and vertices, respectively. We present an approach for computing

2

the mathematical correct topology of a cell in an arrangement of quadrics.
Our algorithm is

(1) exact in the sense that it always computes the mathematical correct re-
sult, even for degenerate inputs, and

(2) efficient in practice concerning its running time.

As far as we know, we are the first who provide a solution to this problem
[35]. For more details consider also [70]. Our algorithm uses exact rational
algebraic computation and it can handle each degenerate input. A prototypical
implementation shows that the theoretical results promise a good performance
in practice.

Our approach operates similarly to the cylindrical algebraic decomposition
[20]. On the surface of a given quadric p, the intersection curves of p with the
remaining quadrics build a 2-dimensional subarrangement. In our example,
the ellipsoids B and G intersect the ellipsoid R. This leads to two intersection
curves on the surface of the ellipsoid R (right picture in Figure 1). Vertices
of this subarrangement are common points of two intersection curves, that
means intersection points of three quadrics.

Computing the 2-dimensional subarrangement on the surface of each quadric
is the basic computation that has to be done independent of the special infor-
mation about the arranged quadrics one may be interested in, in our case the
topological description of a cell. The problem is particularly difficult because
vertices are not expressible as nested square roots of rational numbers. We
look for a method that conceptually is also extendible to more complicated
surfaces. For intersection curves of surfaces of degree greater than 2 there is
no hope to find a parameterization which can be manipulated symbolically in
an easy way. Therefore we choose an approach that works by projection. For
each quadric p we project all its intersection curves with the other quadrics
and additionally its silhouette into the plane. This projection step applied
to our example proceeds like shown in Figure 2. The main contribution of
this work is that we show how to compute the planar arrangements resulting
from the projection. Although we solve planar arrangements of a very special
kind, some of the methods we present carry over to arrangements of arbitrary
algebraic curves and therefore prepare the ground for computing with these
curves.

All curves of the planar arrangements we consider turn out to be defined by
polynomials of degree at most 4. So the reduction is algebraically optimal in
the sense that it does not affect the algebraic degree of the curves we con-
sider. In such arrangements of projected curves singular points and tangential
intersections appear quite frequently as can be seen in the last picture of Fig-
ure 2. The main question with respect to exactness and efficiency is how to

3

3

~gb
~

b
~

r~

1 2

4

R

r

g

b
b

Fig. 2. Project the intersection curves b̃ and g̃ of the ellipsoid R with the ellipsoids
B and G, respectively, and the silhouette r̃ of R into the plane. This leads to the
planar arrangement of the curves b, g, and r.

locate these points. Our contribution, and what is new, is that we succeed in
determining all event points in the planar arrangement efficiently, including
tangential intersection points and singular points. This works for the following
two reasons:

(1) We show that determining non-singular tangential intersection points can
be reduced to the problem of locating transversal intersection points. For
the latter we know that they can be located easily. The reduction is done
by introducing a new curve to the arrangement.

(2) We succeed in factoring univariate polynomials in a way that the coordi-
nates of singular points are roots of quadratic rational polynomials. Only
in the case that a curve consists of four lines, computing the coordinates
requires a second square root.

The organization of the remaining sections is as follows. In Section 2 we give
an overview of previous work related to ours. Section 3 provides the notation
and mathematical tools we need for our approach. In Chapter 4 we sketch the
overall structure of our algorithm for computing a cell in an arrangement of n
quadrics. We show how to reduce the 3-dimensional problem to n planar ones.
We introduce simple box hit counting as a tool for determining transversal
intersections of two curves. Section 5 first provides a method for distinguishing
transversal intersection points from tangential intersection points and from
singular points. Afterwards, we define an auxiliary curve, resulting in a new
method for determining some non-singular intersections called extended box
hit counting. Section 6 deals with the singular points of the planar curves
we obtain from the reduction. We classify them in two different groups. We
prove that one of the groups contains more than 2 singular points only if the
spatial intersection curve of two quadrics consists of two lines and another
conic curve. In Section 7 we prove our main theorem, namely that every event
point in the planar arrangement can be determined. Throughout the previous

4

chapters some generality assumptions concerning the planar curves are made.
In Section 8 we explain how to test and achieve these assumptions for general
input. Finally, in Section 9 we discuss the results we obtained from a prototype
implementation of determining the event points in the plane and give the
prospects for further research.

2 Previous work

As mentioned, methods for the calculation of arrangements of algebraic curves
and surfaces are an important area of research in different branches of com-
puter science.

2.1 Solid Modeling

Arrangements of curved surfaces typically arise in solid modeling, see for ex-
ample [38], when performing boolean operations for quadric surfaces, which
play an important role in the design of mechanical parts. The algorithms in
CAD systems have the advantage that they are quite fast. They profit from
floating point arithmetic and often use numerical procedures for tracing the
intersection curves and then approximate them as spline curves. But just this
makes them very sensitive to approximation and rounding errors. Thus they
achieve the good running time at the expense of exactness in degenerate situa-
tions which are nevertheless frequent in the design of geometric objects. None
of these systems are exact. Recently some efforts have been made towards
exact and efficient implementations:

MAPC [42] is a library for exact computation and manipulation of algebraic
points and curves. It includes an algorithm for computing the arrangement of
curves in the plane. Degenerate situations like tangential intersections or sin-
gular points are explicitly not treated. ESOLID [23] performs exact boundary
evaluation of low-degree curved solids. Also here it is stated that degener-
ate cases cannot be handled. For a more detailed description of MAPC and
ESOLID consider the PhD thesis of Keyser [43].

2.2 Computational Geometry

Also in computational geometry there is a great focus on computing arrange-
ments, but mainly on arrangements of linear objects. Consider the overview
articles of Halperin [37] and Agarwal and Sharir [2]. Algorithms coping with

5

arrangements of lines can be implemented with exact rational arithmetic
and with a good performance, because they only deal with linear algebraic
primitives, see for example the fast filtered implementations in LEDA [47]
and CGAL [34]. There are some geometric methods dealing with arbitrary
curves and surfaces, see for example Mulmuley [54], Dobkin and Souvaine
[25], Snoeyink and Hershberger [66], Bajaj and Kim [8], Nielsen and Yvinec
[56], and Schwarzkopf and Sharir [64]. But all of them neglect the problem of
exact computation in the way that they are based on an idealized real arith-
metic provided by the real RAM model of computation [59]. The assumption
is that all, even irrational, numbers are representable and that one can deal
with them in constant time. This postulate is not in accordance with real
computers.

Recently the exact computation of arrangements of non-linear objects has
come into the focus of research. Several authors have looked into the question
of using restricted predicates to report or compute segment intersections, [14],
[13], and [17]. The restriction used in these papers is on the degrees of the
predicates used by the algorithms. By restricting to low-degree predicates, one
can generally achieve more robust computations. Predicates for arrangements
of circular arcs are treated by Devillers et al. in [24]. Recent work by Emiris
and Tsigardias [31] discusses some predicates on conics in this style. However,
these approaches do not extend easily to more complicated curves.

Wein [69] extended the CGAL implementation of planar maps to conic arcs.
Berberich et al. [11] made a similar approach for conic arcs based on the
improved LEDA [47] implementation of the Bentley-Ottmann sweep-line al-
gorithm [9]. Eigenwillig et al. [28] extended the sweep-line approach to cubic
curves, see also [27]. A generalization of Jacobi curves (used below for locating
tangential intersections) is described by Wolpert [71]. Finally there are efforts
to extend CGAL with a kernel for curved objects [30] but this works only for
circular arcs till now.

2.3 Algebraic Geometry

Computational real algebraic geometry studies algorithmic questions dealing
with real solutions of a system of equalities and inequalities of polynomials
over real numbers, see for example the overview article of Mishra [52].

Collins [20] introduced the cylindrical algebraic decomposition (CAD) as an
improvement of the results obtained by Tarski [67] for quantifier elimination.
The cylindrical algebraic decomposition is based on projection and partitions
the d-dimensional Euclidean space Rd into connected subsets compatible with
the zeros of a set of input polynomials. Some work has been done on improving

6

the result of Collins, see for example Arnon, Collins, and McCallum [4], [5],
and [6], and Edelsbrunner et al. [18].

In principle the cylindrical algebraic decomposition can be implemented and
our algorithm is based on this method. The problem is that after the projection
steps one is left with roots of univariate polynomials. It is an open problem
how to really implement the necessary algebraic primitives for the backwards
construction in an exact and efficient way based on the computation with
these algebraic numbers. Of course one could use the gap theorem introduced
by Canny [16] or multivariate Sturm sequences discussed by Pedersen [58] and
Milne [51] but the running time of both methods is quite high.

For non-singular curves in the plane, some specific work has been done by Arn-
borg and Feng [3] and Arnon and McCallum [7]. Based on the real RAM model
Abhyankar and Bajaj [1] give a polynomial time algorithm that determines the
genus of a plane algebraic curve. Sakkalis [62] uses rational arithmetic to com-
pute the topological configuration of a single curve. He determines isolating
boxes for the singular points with the help of negative polynomial remainder
sequences. This last approach, although it is exact, is not very efficient, at
least if singular points occur frequently. Hong [39] improves this approach by
using floating point interval arithmetic.

Of course, in algebraic geometry and computer algebra some effort was made
in developing software. For example, LiDIA [57] is a library for computational
number theory. APU is [61] a tool for real algebraic numbers. Core [40] and
LEDA [47] are libraries that address the issues of robust numerical and geo-
metric computation.

2.4 Quadric surface intersection

Quadric surfaces are of great importance because they are the simplest of all
curved surfaces and they are widely used in the design of mechanical parts.
Levin [45], [46] introduced a pencil method for computing an explicit para-
metric representation of the intersection between two quadrics. Arguing that
Levin’s method does not take advantage of the fact that degenerate intersec-
tion curves admit a rational parameterization, Farouki, Neff, and O’Connor
[33] made a complete study of degenerate cases for arbitrary quadric surfaces.

Based on Levin’s method specific work has been done for natural quadrics,
see for example Miller [49], Goldman and Miller [48], [50], and Shene and
Johnstone [65].

Interval arithmetic is used by Geismann, Hemmer, and Schömer [35] to keep
track of all occurring rounding and approximation errors that appear in Levin’s

7

algorithm while computing a cell in an arrangement of quadrics. If the input
does not lie too near to a degenerate configuration, the algorithm will succeed
in predicting the correct topological structure of the intersection. Otherwise
it can detect the existence of a critical situation.

Dupont, Lazard, Lazard, and Petitjean [26] and recently Lazard, Penaranda,
and Petitjean [44] improved and implemented Levin’s method for computing
parameterizations for the intersection of two arbitrary implicit quadrics. Their
parameterization is nearly optimal in the sense that its coefficients are con-
tained in the smallest possible field extension of the rational numbers, up to a
unique perhaps unnecessary square root. The lack of easy parameterizations
for intersection curves of higher degree surfaces restricts their approach to
quadric surfaces.

A very recent result on computing arrangements of quadric surfaces is by
Mourrain et al. [53]. They use a space-sweep algorithm and therefore reduce
the static 3-dimensional problem to a dynamic 2-dimensional one.

3 Notation

In this section we will shortly introduce the mathematical notation we will
use in the following.

3.1 Surfaces and Curves

The objects we consider and manipulate in our work are algebraic surfaces and
curves represented by rational polynomials. More generally, we define an alge-
braic hypersurface in the following way: Let f be a polynomial in Q[x1, . . . , xd].
We set

zero(f) := {(a1, . . . , ad) ∈ Rd | f(a1, . . . , ad) = 0}
and call zero(f) the algebraic hypersurface defined by f . We reserve the
terms algebraic surface and algebraic curve for the special cases d = 3 and
d = 2, respectively. For example the ellipsoid R in Figure 1 is defined by the
polynomial R(x, y, z) = 27x2+62y2+249z2−10. If the context is unambiguous,
we will often identify the defining polynomial of a hypersurface with its zero
set.

The total degree of an algebraic hypersurface is the highest degree of all mono-
mials of its defining polynomial. Thus, ellipsoids are degree 2 algebraic sur-
faces. We call degree 2 algebraic surfaces quadric surfaces, or quadrics for
short.

8

A hypersurface f is called squarefree if there are no polynomials f1, f2 ∈
Q[x1, . . . , xd] of positive total degrees with f = f 2

1 · f2. For a hypersurface f
the gradient vector of f is defined to be

∇f =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xd

)
=: (fx1 , fx2 , . . . , fxd

) ∈ (Q[x1, . . . , xd])
d.

In the following we will always use the notation ∂f
∂x

=: fx for the partial
derivative of f with respect to x. With the help of the gradient vector we
characterize a point a = (a1, . . . , ad) ∈ Rd lying on the hypersurface f . It is
named a singular point of f if ∇f(a) = 0, otherwise it is non-singular. The
geometric interpretation is that singular points of a squarefree hypersurface f
are exactly the ones that do not admit a unique tangential hyperplane to f .
In a non-singular point a of f the tangential hyperplane is perpendicular to
(∇f)(a).

As we will see, our main task will be the computation of arrangements of curves
in the plane. So for the moment let us consider d = 2. Let (a, b) be a non-
singular point of a curve f in the plane, i.e. there exists a well defined tangent
line in that point. Under certain assumptions we do a further classification of
(a, b) (for illustration have a look at Figure 3):

(1) We speak of (a, b) having a vertical tangent in the case ∇f(a, b) = c·(1, 0)
with c being a non-zero constant.

(2) The point (a, b) is called a turning point of the curve if the tangent of f
at (a, b) crosses f in (a, b). At a turning point the curvature of f changes
sign. A necessary condition is that the polynomial f1(x, y) := (fxxf

2
y −

2fxfyfxy +fyyf
2
x)(x, y) ∈ Q[x, y] has a root at (x, y) = (a, b): f1(a, b) = 0.

(3) If (a, b) is a turning point that additionally has a vertical tangent, then we
call it a vertical turning point. In our work we consider curves of degree at
most 4. A point (a, b) is a vertical turning point of a curve f of degree at
most 4 iff it is non-singular and has a 3-fold intersection with the vertical
line x = a, i.e. iff

fy(a, b) = 0 and fyy(a, b) = 0 and fyyy(a, b) 6= 0 and fx(a, b) 6= 0.

(4) We call (a, b) an extreme point if it has a vertical tangent but is not a
turning point.

A point a = (a1, . . . , ad) ∈ Rd is called an intersection point of two hypersur-
faces f and g if it lies on the hypersurface f as well as on the hypersurface g.
It is called a tangential intersection point of f and g if additionally the two
gradient vectors ∇f(a) and ∇g(a) are linearly dependent in a. Otherwise we

9

r

y
b

b1

2

Fig. 3. The curve has two extreme points b1, b2, one vertical turning point r, and a
turning point y.

speak of a transversal intersection point. If a is an intersection point of f and
g and simultaneously a singular point of f , then of course ∇f(a) = 0 and
a is a tangential intersection point of f and g. We call an intersection point
non-singular, if it is neither a singular point of f nor of g.

Two hypersurfaces f, g ∈ Q[x1, . . . , xd] are coprime if they only share a com-
mon constant factor. The set of all intersection points of two coprime surfaces
p and q is named intersection curve. In 3-space a point (a, b, c) on the in-
tersection curve is a tangential intersection point of p and q if and only if
the two gradient vectors (fx, fy, fz)(a, b, c) and (gx, gy, gz)(a, b, c) are linearly
dependent, which can be expressed algebraically as:

(∇f ×∇g) (a, b, c) =




fygz − fzgy

fxgz − fzgx

fxgy − fygx




(a, b, c) =




0

0

0



.

For two planar curves f and g an intersection point (a, b) is tangential if and
only if (fxgy − fygx)(a, b) = 0.

We are interested in real singular, extreme, and vertical turning points of one
curve f and also in real intersection points of two curves f and g. But R is not
algebraically closed and most of the time we have to work over its algebraic
closure C. Therefore we transfer all notations and definitions we made for real
points also to points in complex d-dimensional space.

3.2 Generality assumptions

After introducing the most important notation we will name properties of
hypersurfaces that are, unlike the previous definitions, not intrinsic to the
geometry of the arrangement induced by the hypersurfaces. They only depend

10

on the way the hypersurfaces are represented or on our chosen coordinate
system.

We will establish squarefreeness for each hypersurface and coprimality for each
pair of hypersurfaces we consider during our algorithm. Both conditions can
be easily tested with resultants which we will introduce in the next section. If
necessary, we split the curves with bivariate gcd-computation into squarefree
and coprime subcurves, each defined by a rational polynomial. This operation
does not change the topology of the arrangement. It just changes the way the
curves are represented.

We call a polynomial f = fnx
n
d + . . . + f0x

0
d ∈ Q[x1, . . . , xd] with coefficients

fi ∈ Q[x1, . . . , xd−1] generally aligned with respect to xd if fn is a non-zero
constant: 0 6= fn ∈ Q. The polynomial f is named generally aligned if it is
generally aligned with respect to every xi, 1 ≤ i ≤ d. Geometrically general
alignment means the absence of asymptotes parallel to the coordinate axes.

We say that two curves defined by f, g ∈ Q[x, y] are in general relation with
respect to x, if they have no two common roots with the same x-value. If two
polynomials f and g are in general relation with respect to x as well as with
respect to y, they are in general relation.

General alignment and general relation constitute no restriction on our sur-
faces and curves we consider. In Section 8 we will show how to test and realize
them with a random shear for each kind of input. A shear has no effect on the
topology of the arrangement.

We call a pair of curves f and g well-behaved, if both curves are generally
aligned, squarefree, coprime and in general relation.

4 The basic algorithmic and algebraic ideas

Our aim is to compute the topology of a cell in an arrangement of quadrics.
Let P be the set of all quadrics. The basic operation that has to be at our
disposal is the following: For each quadric p ∈ P we have to compute the 2-
dimensional subarrangement on its surface, remember Figure 1. That means
for all p 6= q ∈ P we have to compute the intersection curve of p and q and we
have to compute the interaction of all these curves on the surface of p. Our
approach for computing the subarrangements is based on a projection step as
it also occurs in the cylindrical algebraic decomposition [20].

11

4.1 Resultants and subresultants

We compute the projection of the intersection curve of two quadrics into the
plane. Algebraically this means determining the (x, y)-coordinates of common
roots of the two defining polynomials. This computation can be done with
the help of resultants. For some further investigations we will also introduce
subresultants. All propositions here are stated without proofs. For the proofs
and further references on resultants consider for example [22], [72], for the
ones on subresultants have a look at [15], [68].

Suppose we are given f, g ∈ Q[x1, . . . , xd] with positive degree in xd. We write

f = fnx
n
d + . . .+ f0x

0
d , g = gmx

m
d + . . .+ g0x

0
d.

Here f and g are regarded as polynomials in xd with coefficients fi, gj ∈
Q[x1, . . . , xd−1], 1 ≤ i ≤ n and 1 ≤ j ≤ m. We define the Sylvester matrix of
f and g with respect to xd to be the following (m + n) × (m + n) coefficient
matrix with m rows of f -entries and n rows of g-entries:

Syl(f, g, xd) :=




fn fn−1 . . . f0

fn fn−1 . . . f0

.

fn fn−1 . . . f0

gm gm−1 . . . g0

gm gm−1 . . . g0

.

gm gm−1 . . . g0




where the empty places are filled with zeros. The determinant of the ma-
trix is called the resultant of f and g with respect to xd: res(f, g, xd) :=
det(Syl(f, g, xd)) ∈ Q[x1, . . . , xd−1]. One can show that the resultant is a poly-
nomial of total degree at most n ·m.

Here is the statement that the resultant of f and g with respect to xd performs
a projection of the common roots of f and g onto the (x1, . . . , xd−1)-plane:

Theorem 1 Let f, g ∈ Q[x1, . . . , xd] be generally aligned with respect to xd.
A complex point (c1, . . . , cd−1) ∈ Cd−1 is extendible to a common solution
(c1, . . . , cd−1, cd) ∈ Cd of f and g if and only if (c1, . . . , cd−1) is a root of the
resultant res(f, g, xd).

The resultant is equal to the zero polynomial iff f and g are not coprime.

12

We have just stated that a point (c1, . . . , cd−1) ∈ Cd−1 is a root of the resultant
res(f, g, xd) if and only if f(c1, . . . , cd−1, xd) ∈ C[xd] and g(c1, . . . , cd−1, xd) ∈
C[xd] have a common factor. Sometimes one is also interested in the degree
of this common factor. For answering this questions we consider subresul-
tants: Let Sl be the submatrix of the Sylvester matrix Syl(f, g, xd) obtained
by deleting the last 2l columns, the last l rows of f -entries, and the last l
rows of g-entries. The determinant of this matrix is again a polynomial in
Q[x1, . . . , xd−1] and we call it the l-th subresultant of f and g with respect to
xd: sresl(f, g, xd) ∈ Q[x1, . . . , xd−1]. One can prove the following:

Theorem 2 Let f, g ∈ Q[x1, . . . , xd] be generally aligned with respect to xd.
For a point (c1, . . . , cd−1) ∈ Cd−1 the polynomials f(c1, . . . , cd−1, xd) ∈ C[xd]
and g(c1, . . . , cd−1, xd) ∈ C[xd] have a greatest common divisor of degree h if
and only if h is the least index l for which sresl(f, g, xd) does not vanish at
(c1, . . . , cd−1).

4.2 The projection phase

In order to correctly interpret the resultant of two quadrics as the projected
intersection curve, we assume throughout this and the next chapters that the
quadratic input polynomials are squarefree and generally aligned and that each
two of them are coprime. These assumptions constitute no restriction on the
input quadrics, see also Section 8.

From the point of view of the (x, y)-plane a quadric p consists of three different
parts: the lower part, the silhouette, and the upper part. The lower (upper) part
of the quadric p consists of all points (a, b, c) ∈ R3 such that p(a, b, z) ∈ R[z]
has two different real roots and c is the smaller (bigger) root. The silhouette
of the quadric p consists of all points (a, b, c) ∈ R3 such that p(a, b, z) ∈ R[z]
has one root of multiplicity 2 and c is this root.

For each input quadric p we want to compute the planar arrangement on its
surface. So we perform a projection step for each quadric p. In our overall
example the ellipsoid R is intersected by the ellipsoid G in one intersection
curve g̃ consisting of one connected component and by the ellipsoid B in
a second intersection curve b̃ consisting of two connected components, see
Figure 4. With the help of resultants all intersection curves are projected
onto the (x, y)-plane. This leads to the two planar curves g and b in our
example. Besides the intersection curves we also project the silhouette of the
underlying quadric p, in our example the silhouette r̃ of the ellipsoid R, leading
to the curve r. It is easy to see that this last projection can be performed by
computing res(p, pz, z).

13

b
~

b
~

r~

~g

r

b

g

b

Fig. 4. For the quadric R we project its silhouette and all its intersection curves
with the other quadrics into the plane.

In the planar arrangement we obtain for quadric p, there are two different
types of planar curves and exactly one curve is of the first type:

silhouettecurve: The projection of the silhouette of p. The planar curve is the
set of roots of res(p, pz, z) and its algebraic degree is bounded from above
by deg(p) · deg(pz) = 2. This is the curve r in our example.

cutcurve: The projection of the spatial intersection curve of p with another
quadric q. The planar curve is the set of roots of res(p, q, z) and its algebraic
degree is at most 4.

During the projection we lose the spatial information. Points of intersection
curves on the upper part of p and on the lower part of p are projected on top of
each other. This can cause singular points. For example the two branches of the
curve b̃, one running on the upper and one on the lower part of the ellipsoid
R, are projected on top of each other generating two self-intersections, see
Figure 4.

Moreover, in space the curves b̃ and g̃ have 2 intersection points, marked by the
small arrows. The projected curves b and g in comparison have 6 intersection
points, 4 of them resulting from the loss of spatial information.

The important part of our algorithm with respect to exactness and efficiency is
to compute the planar arrangements we obtain from the projection. Of course,
afterwards we have to recover the spatial information in a postprocessing step
in order to compute the arrangement of spatial intersection curves running on
the surface of each quadric. We shortly sketch the main idea, for more details
consider [12]: For each edge in the planar arrangement we have to decide
whether it belongs to the upper or to the lower part of the underlying quadric
p. For edges lying on the silhouettecurve nothing has to be done. Let us look
at edges lying on a cutcurve. A cutcurve originates from an intersection curve
of two quadrics p and q. Every edge has two adjacent cells in the plane. During
the computation of the planar arrangement we easily obtain one rational point
inside each of the two cells for free. We consider a line through each of these

14

points parallel to the z-axis and compute the order in which p and q are
intersected along the lines. By comparing the two orderings we can make the
decision. As soon as we have computed the arrangement on the surface of
every quadric combining these results to the desired description of the whole
arrangement or of one cell is only a problem of discrete combinatorics and
data structures, not of exact algebraic computation.

4.3 Computing planar arrangements

We have to compute the planar arrangements we obtain from the projection
phase. As we have seen, each arrangement consists of one silhouettecurve and
a set of cutcurves. One way of representing the arrangement would be to store
its trapezoidal decomposition [55]. The points at which a vertical attachment
has to be added are the following, consider also Figure 5:

a) intersection points of two curves,
b) singular points of one curve, for example self-intersection points,
c) and extreme points.

The main part of computing the trapezoidal decomposition with respect to
exactness and efficiency is to determine and locate all these points.

a)

b)

c)

g

f

f

f

f

Fig. 5. A trapezoidal decomposition of the planar arrangement and points where a
vertical attachment is added.

We would like to interpret singular and extreme points of a curve f as inter-
section points of two curves. Due to this aim we also defined vertical turning
points in Section 3: The intersection points of f and fy are exactly the singu-
lar, extreme, and vertical turning points of f . For illustration consider Figure
6. We make the following definition:

Definition 3 The event points of a planar arrangement induced by a set F of
planar curves are defined as the intersection points of each two curves f, g ∈ F
and the intersection points of f and fy for all f ∈ F .

15

f
g=fy

g

Fig. 6. Singular, extreme and vertical turning points of f are marked by small boxes.
They are exactly the intersection points of f and g = fy.

4.4 Computing intersection points of two curves

With our last observations we have reduced the problem of computing the
event points in the planar arrangement to the question of determining inter-
section points of two curves f and g. Let F be the set of algebraic curves in
the planar arrangement. Without loss of generality we assume that every pair
of curves is well-behaved, see also Section 8. Due to our previous investiga-
tions, we can distinguish four different types of pairs of curves, the intersection
points of which we want to locate:

(1) f ∈ F and g = fy, whereby f is the silhouettecurve.
(2) f ∈ F and g = fy, whereby f is a cutcurve.
(3) f, g ∈ F and one of the two curves is the silhouettecurve and the other

one is a cutcurve.
(4) f, g ∈ F and both curves are cutcurves.

We face the problem that in general common points of two curves f and g will
have irrational coordinates. Nevertheless we have to locate and characterize
them exactly and unambiguously. Our solution again works in the spirit of the
cylindrical algebraic decomposition. We compute the two univariate polyno-
mials X = res(f, g, y) ∈ Q[x] and Y = res(f, g, x) ∈ Q[y]. Let R(X) be the
set of real roots of X and R(Y) be the ones of Y . Each real intersection point
of f and g is a member of the grid

Grid(X,Y) := R(X)×R(Y) = {(rx, ry) | rx ∈ R(X), ry ∈ R(Y)}.

By definition, an algebraic number is a root of some polynomial u ∈ Q[x]. If
deg(u) > 2 the real roots of u cannot always be expressed with a real expression
with radicals. But we can compute an isolating interval for each real root α of
u. That means we compute two rational numbers a and b such that α is the
one and only real root of u in [a, b]. There are various methods of determining
these isolating intervals [21], for example the algorithm of Uspensky.

16

x

y

Fig. 7. Distinguish the empty light-colored boxes from the dark-colored ones

We cannot work directly on the grid Grid(X, Y), but with the help of a root
isolation algorithm we determine rational interval representations for the real
algebraic numbers in R(X) and R(Y). This gives us rational intervals on the
x- and y-axis, each containing one real root of X and Y , respectively. Every
interval [a, b] on the x-axis, a, b ∈ Q, can be vertically extended to a stripe in
the plane consisting of all points (x, y) with a ≤ x ≤ b and y ∈ R. In the same
way each interval on the y-axis can be extended to a horizontal stripe. The
intersection of the stripes yields disjoint boxes with rational corners. The real
intersection points of f and g are contained in the boxes, at most one in each
box.

For algorithmic reasons we furthermore want each box to contain at most one
singular or extreme point of f and of g. In case a box contains an intersec-
tion point of f and g as well as a singular or extreme point, the coordinates
of the two event points should be identical. This can easily be obtained by
pairwise separating the real roots of X, res(f, fy, y), res(g, gy, y), and of Y ,
res(f, fy, x), res(g, gy, x) via gcd-computation and bisection by midpoints of
the root isolating intervals.

It remains to test each box for a real intersection point. Unfortunately, the
number of boxes is nearly quadratic in the number of intersection points. In
the example in Figure 7 we have to distinguish the empty light-colored boxes
from the dark-colored ones that contain an intersection point.

4.5 Testing a box for an intersection point

We have to answer the question whether a box with rational corners contains
an intersection point of f and g or not. The problem is that we have no

17

information about what is happening inside the box. The only thing we can
obtain is some information about the boundary of the box. Again with the help
of a root isolating algorithm we compute the sequence of hits of the curves
along the left edge of the box, counted with multiplicities. We analogously
do the same for the upper, right, and lower edge of the box. This gives us a
sequence of hits of f and g around the boundary of the box.

Sometimes this sequence can help us to determine the behavior of the curves
inside the box. If there are exactly two hits with each curve, counted with
multiplicities, and the hits alternate, then we can be sure that there is an
intersection point inside the box at which the two curves cross each other, see
Figure 8. This method of locating for example transversal intersection points
we call simple box hit counting. It is also discussed in [42].

g

f

Fig. 8. Transversal intersections can be solved with simple box hit counting by ex-
amining the sequence of hits of the curves with the boundary of the box in clockwise
order, staring at the lower left vertex.

Simple box hit counting:

determine sequence of hits of f and g with the box

while (#hits(f) > 2) or (#hits(g) > 2)

shrink the box

determine sequence of hits of f and g with the box

if (#hits(f) < 2) or (#hits(g) < 2) output: 0 // empty box

else

if (hits alternate) output: 1 // intersection point

else output: 0 // empty box

It is easy to see that simple box hit counting has the output 1 if and only if
the box contains an intersection point at which f and g cross each other.

fy fy fy fy
f

f

f f

g
g

f

f

Fig. 9. Tangential intersection points and singular points cannot always be solved
with simple box hit counting

The problem of simple box hit counting is that it sometimes cannot detect
tangential intersection points of f and g, see Figure 9. In the first box f and g

18

have a non-singular tangential intersection, in the second box they have not.
But the sequence of hits is identical in both cases. For non-singular tangential
intersections our simple box hit counting algorithm ends up with the wrong
output empty box.

Also singular points of f can be problematic, consider the last two pairs of
boxes in Figure 9. Remember our definition that singular points of f are
tangential intersection points of f and fy. For self-intersections the first while-
loop of the simple box hit counting algorithm runs forever. For the isolated
point it gives the wrong answer empty box.

Concerning the examination of the boxes we have to solve two problems in
the following:

(1) Find a method to avoid applying simple box hit counting to boxes that
contain a tangential intersection in order to avoid infinite loops and wrong
results.

(2) Find methods to solve these tangential intersections, that means find
methods to solve (a) non-singular tangential intersections and (b) singular
points.

The answer to these two questions is crucial, because, as one can see in Figure
10, non-singular tangential intersections and singular points appear quite often
in our arrangements. This is the reason why classical methods like the gap
theorem [16] or multivariate Sturm calculation [51] are too expensive. In the
next two chapters we will develop a new method that treats these cases in a
fast and robust way.

Fig. 10. Tangential intersections and self-intersections appear quite often

5 Non-singular tangential intersections

In this section we will answer the first question of how to avoid applying
simple box hit counting to boxes that contain a tangential intersection. Again

19

remember our definition that also singular points of f can be interpreted as
tangential intersection points, namely of f and fy. The boxes are defined by the
roots of the resultants on the x- and on the y-axis. The roots can have different
multiplicities. There is a strong connection between the kind of intersection
two planar curves f and g have at a common point (a, b) and the multiplicity
of the root a of the resultant X = res(f, g, y). Of course, the considerations
symmetrically hold for a root b of the resultant Y = res(f, g, x).

5.1 Multiple roots of the resultant

For two curves f and g we want to investigate the roots of X = res(f, g, y) ∈
Q[x] and especially their multiplicities.

Theorem 4 Let f and g be two well-behaved polynomials. Then every multiple
root of X = res(f, g, y) is in 1-1 correspondence to one tangential intersection
point of the curves defined by f and g.

PROOF. The two curves f and g are well-behaved. From the definition of
well-behavedness, which includes generally alignment and general relation,
together with Theorem 1 ones derives that every root a of X is in 1-1 corre-
spondence to one intersection point (a, b) of f and g.

Without loss of generality let us in the following assume (a, b) = (0, 0). This
is not a restriction because the multiplicities of the roots of X are invariant
under translation of f and g: a translation of the two curves in x-direction
only causes the same translation of the roots of the resultant. A translation
in y-direction keeps the resultant unchanged.

In order to proof the theorem we have to show that 0 is a multiple root of X
if and only if (0, 0) is a tangential intersection point of f and g. Using partial
derivatives it is easy to see that f and g can be written in the form

f(x, y) =
n∑

i=0

(
n−i∑

j=0

1

i!j!
fxjyi(0, 0)︸ ︷︷ ︸

=:f̃
xjyi

·xj) ·yi, g(x, y) =
m∑

i=0

(
m−i∑

j=0

1

i!j!
gxjyi(0, 0)︸ ︷︷ ︸

=:g̃
xjyi

·xj) ·yi.

20

With this new notation the resultant has the following form:

X = res(f, g, y) = x · det




. .

. . . x2(∗) + f̃xx 0

. . . x(∗) + f̃y x(∗) + f̃x

. .

. . . x2(∗) + g̃xx 0

. . . x(∗) + g̃y x(∗) + g̃x




=: x · detV

where all remaining entries in the last two columns of V are 0. We know that
the resultant is a polynomial of degree at most n ·m and because of that there
are some rational numbers αi, 1 ≤ i ≤ mn, with

X = x · detV =: x · (α1 + α2x+ . . .+ αmnx
mn−1).

The resultant has a root of multiplicity greater than 1 in x = 0 if and only
if the coefficient α1 is equal to zero. By the definition of V and α1 we have
α1 = detV (0). Substituting x = 0 into V and applying the definition of the
first subresultant we can explicitly compute α1:

α1 = detV (0) = det




.

A 0 0

. . . f̃y f̃x

.

B 0 0

. . . g̃y g̃x




= (−1)n · (f̃xg̃y − f̃yg̃x) · det



A

B




= (−1)n · (fxgy − fygx)(0, 0) · sres1(f, g, y)(0).

We conclude that 0 is a multiple root of X if and only if (fxgy−fygx)(0, 0) = 0
or sres1(f, g, y)(0) = 0. We want to prove that 0 is a multiple root of X if and
only if (0, 0) is a tangential intersection point of f and g, that means if and
only if (fxgy − fygx)(0, 0) = 0. So it remains to show that sres1(f, g, y)(0) = 0
implies (fxgy − fygx)(0, 0) = 0.

By assumption the two curves f and g are well-behaved. By Theorem 2 we
have sres1(f, g, y)(0) = 0 if and only if the two polynomials f(0, y), g(0, y) have

21

a common factor of degree at least 2. From general alignment we conclude
that this common factor must have the form yi for some i ≥ 2. This implies
fy(0, 0) = gy(0, 0) = 0 and therefore (fxgy − fygx)(0, 0) = 0. 2

Theorem 4 gives us a criterion for distinguishing boxes that can be correctly
solved by simple box hit counting from the ones for which this tool is not suit-
able. The only thing we have to do is factoring the resultant X = res(f, g, y)
of two curves f and g into one polynomial u1 containing all simple roots and
one polynomial u2 containing all multiple roots: X = u1 ·u2. This factorization
can be done by derivative- and gcd-computations. The same has to be done
for Y = res(f, g, y): Y = v1 · v2. Intersection points of f and g can only take
place in boxes that are defined by roots of X and Y of the same multiplic-
ity. The transversal intersections appear only in the boxes defined by the real
roots of u1 and v1 and these boxes cannot contain tangential intersections. So
these boxes can be correctly solved in all cases by simple box hit counting.
This answers our first question we posed at the end of the last section. The
remaining question is how to solve the boxes defined by the roots of u2 and
v2.

5.2 The Jacobi curve

For well-behaved curves multiple roots correspond to tangential intersections.
By definition, a point (a, b) is a tangential intersection of f and g if and only
if f(a, b) = g(a, b) = 0 and (a, b) is a root of the polynomial fxgy − fygx. This
polynomial and the curve it defines will play an important role in our future
investigations. Therefore we will give it a name:

Definition 5 Let f, g ∈ Q[x, y] be two bivariate polynomials. We define a
third polynomial h ∈ Q[x, y] by

h := fxgy − fygx.

The set of real roots of this polynomial h we call Jacobi curve of f and g.

We remark that the algebraic degree of h is bounded from above by deg(f) +
deg(g)− 2. With the help of the Jacobi curve we reformulate Theorem 4:

Corollary 6 Let f, g ∈ Q[x, y] be well-behaved polynomials. The point a ∈ C
is a root of multiplicity ≥ 2 of the resultant res(f, g, y) if and only if there exists
a number b ∈ C such that (a, b) is a common root of f , g, and h = fxgy−fygx.

For a non-singular tangential intersection point (a, b) of f and g there are
two possibilities: either h cuts f and g transversally in (a, b) or tangentially,

22

consider Figure 11. Both situations lead to different multiplicities of the root
x = a of res(f, g, y):

h
h

g

f f

g

Fig. 11. The Jacobi curve h either cuts tangentially or transversally through a
tangential intersection point of f and g.

Theorem 7 Let f, g ∈ Q[x, y] be two well-behaved bivariate polynomials, the
planar curves of which have a non-singular tangential intersection in the point
(a, b). Then the Jacobi curve h intersects f as well as g transversally in (a, b),
or a is a root of multiplicity ≥ 3 of res(f, g, y).

PROOF. We again assume without loss of generality that (a, b) = (0, 0).
Further let f be a polynomial of total degree n and g be a polynomial of total
degree m. With the notation introduced in the last subsection we obtain the
following:

res(f, g, y)

= x · det




. .

. . . x(∗) 0 0

. . . x(∗) + f̃y x2(∗) + f̃xx 0

. . . x(∗) + 1
2!
f̃yy x2(∗) + f̃xyx+ f̃y x2(∗) + 1

2!
f̃xxx+ f̃x

. .

. . . x(∗) 0 0

. . . x(∗) + g̃y x2(∗) + g̃xx 0

. . . x(∗) + 1
2!
g̃yy x2(∗) + g̃xyx+ g̃y x2(∗) + 1

2!
g̃xxx+ g̃x




=:x · detV

= x · (α1 + α2x+ . . .+ αmnx
mn−1).

Note that all other entries in the last three columns of the determinant are
zero. We know from the previous section that α1 = 0 because f and g intersect
tangentially in (0, 0). It remains to show that α2 = 0 if h does not intersect
f and g transversally. If h does not intersect f and g transversally, then all

23

three gradient vectors (f̃x, f̃y), (g̃x, g̃y), (h̃x, h̃y) with

(h̃x, h̃y) = (f̃xxg̃y + f̃xg̃xy − f̃xyg̃x − f̃yg̃xx, f̃xyg̃y + f̃xg̃yy − f̃yyg̃x − f̃yg̃xy)

are linearly dependent. We obtain the three properties

1) 0 = f̃xg̃y − f̃yg̃x

2) 0 = h̃xf̃y − h̃yf̃x

= f̃y(f̃xxg̃y − f̃yg̃xx) + 2f̃y(f̃xg̃xy − f̃xyg̃x)− f̃x(f̃xg̃yy − f̃yyg̃x)

3) 0 = h̃xg̃y − h̃yg̃x

= g̃y(f̃xxg̃y − f̃yg̃xx) + 2g̃y(f̃xg̃xy − f̃xyg̃x)− g̃x(f̃xg̃yy − f̃yyg̃x).

We will show that under these three conditions α2 = 0 holds. We have detV ∈
Q[x] and we know that α2 = (detV)′(0). Let Vi be the matrix we obtain from
V by replacing the polynomials in the i-th column by their derivative. We
obtain

α2 =
n+m∑

i=1

detVi(0).

Let us first have a look at detVi(0) for i = 1, . . . , n+m− 2. For such a Vi we
take the derivative of a column of V that is not one of the last two. For all
these determinants there exist submatrices Ai and Bi with

(detVi)(0) = det




0 0

Ai
...

...

0 0

. . . ∗ f̃y f̃x

0 0

Bi
...

...

0 0

. . . ∗ g̃y g̃x




= (−1)n · (f̃xg̃y − f̃yg̃x) · det



Ai

Bi




= 0

by our property 1). It follows

α2 = detVm+n−1(0) + detVm+n(0)

24

= det




.

. . . f̃y f̃x 0

. . . 1
2!
f̃yy f̃xy f̃x

.

. . . g̃y g̃x 0

. . . 1
2!
g̃yy g̃xy g̃x




+ det




.

. . . f̃y 0 0

. . . 1
2!
f̃yy f̃y

1
2!
f̃xx

.

. . . g̃y 0 0

. . . 1
2!
g̃yy g̃y

1
2!
g̃xx




with all other entries in the last 3 columns being 0. Let us have a look at
these last 3 columns of Vm+n−1 and Vm+n. For a d× d matrix M let M(i, j, k)
denote the 3 × 3 submatrix the entries of which are taken from the last 3
columns and the rows i, j, and k of M . If the determinant of each of these
submatrices is equal to zero, that means if for each triple (i, j, k) with 1 ≤ i <
j < k ≤ d we have detM(i, j, k) = 0, then we can easily conclude detM = 0.
The two matrices Vm+n−1 and Vm+n are of the same size and all columns are
identical, except the last 2. So a similar argumentation about developing the
two determinants with respect to the last 3 columns leads to the following: If
detVm+n−1(i, j, k) + detVm+n(i, j, k) = 0 for all 1 ≤ i < j < k ≤ n +m, then
α2 = detVm+n−1 + detVm+n = 0. In order to finish the proof it remains to
show

detVm+n−1(i, j, k) + detVm+n(i, j, k) = 0 for all 1 ≤ i < j < k ≤ n+m.

Remember our properties 1), 2), and 3) we made before.

(1) {i, j, k} 6⊂ {m− 1,m, n+m− 1, n+m}
In this case we know that both matrices Vm+n−1 and Vm+n have one row
with only zero entries.

(2) (i, j, k) = (m− 1,m, n+m− 1)

det




f̃y f̃x 0

1
2
f̃yy f̃xy f̃x

g̃y g̃x 0




+ det




f̃y 0 0

1
2
f̃yy f̃y

1
2
f̃xx

g̃y 0 0




=−f̃x(f̃yg̃x − f̃xg̃y)− 1

2
f̃xx(f̃y · 0− 0 · g̃y)

1)
= 0

(3) (i, j, k) = (m− 1,m, n+m)

25

det




f̃y f̃x 0

1
2
f̃yy f̃xy f̃x

1
2
g̃yy g̃xy g̃x




+ det




f̃y 0 0

1
2
f̃yy f̃y

1
2
f̃xx

1
2
g̃yy g̃y

1
2
g̃xx




= f̃y((f̃xyg̃x − f̃xg̃xy)− 1

2
f̃x(f̃yyg̃x − f̃xg̃yy) +

1

2
f̃y(f̃yg̃xx − f̃xxg̃y)

=−1

2

(
f̃y(f̃xxg̃y − f̃yg̃xx) + 2f̃y(f̃xg̃xy − f̃xyg̃x)− f̃x(f̃xg̃yy − f̃yyg̃x)

)

2)
= 0

(4) (i, j, k) = (m− 1, n+m− 1, n+m)

det




f̃y f̃x 0

g̃y g̃x 0

1
2
g̃yy g̃xy g̃x




+ det




f̃y 0 0

g̃y 0 0

1
2
g̃yy g̃y

1
2
g̃xx




= g̃x(f̃yg̃x − f̃xg̃y) + 0
1)
= 0

(5) (i, j, k) = (m,n+m− 1, n+m)

det




1
2
f̃yy f̃xy f̃x

g̃y g̃x 0

1
2
g̃yy g̃xy g̃x




+ det




1
2
f̃yy f̃y

1
2
f̃xx

g̃y 0 0

1
2
g̃yy g̃y

1
2
g̃xx




=−g̃y(f̃xyg̃x − f̃xg̃xy) +
1

2
g̃x(f̃yyg̃x − f̃xg̃yy)− 1

2
g̃y(f̃yg̃xx − f̃xxg̃y)

=
1

2

(
g̃y(f̃xxg̃y − f̃yg̃xx) + 2g̃y(f̃xg̃xy − f̃xyg̃x)− g̃x(f̃xg̃yy − f̃yyg̃x)

)

3)
= 0 2

For illustration have a look at the silhouettecurve r and the cutcurve g in
Figure 12. There are two tangential intersection points of r and g both causing
roots of multiplicity 2 in the resultant X = res(r, g, y). And indeed, the Jacobi
curve h has transversal intersections with r and g in both marked tangential
intersection points.

26

g
h

h

h

hr

Fig. 12. Introduce the Jacobi curve in order to solve simple tangential intersections

5.3 Extended box hit counting

The Jacobi curve h leads to a new test for non-singular tangential intersection
points that cause a root of multiplicity 2 in the resultant. The problem of
this test is that it works only if we know in advance that an examined box
contains no singular point. We address the problem of singular points and how
to exclude that a singular point is contained in a box in the next two sections.

In order to determine the intersection points of two curves f and g, we par-
tially factor their resultant X = res(f, g, y) over Q using partial derivatives
and gcd-computation into one polynomial u1 containing all simple roots, one
polynomial u2 containing all double roots, and one polynomial u3 contain-
ing the rest: X = u1 · u2

2 · u3. The same has to be done for Y = res(f, g, y):
Y = v1 · v2

2 · v3. The boxes defined by the real roots of u1 and v1 can be solved
correctly by simple box hit counting. A box defined by u2 and v2 can be tested
for a non-singular tangential intersection point with the help of the Jacobi-
curve h. In order to get a correct result, we first have to make the box small
enough to guarantee that there is exactly one intersection point between f , g,
and h inside the box.

Extended box hit counting:

if (# different intersection points f,g,h >1)

make box small enough

if (simple box hit counting (f,h) = 1

& simple box hit counting (g,h) = 1)

output: 1 // tangential intersection

else output: 0

As mentioned above, extended box hit counting only works correct if we know
in advance that the box does not contain a singular point.

27

5.4 Explicit Solutions

In the last sections we used partial factorization of univariate polynomials with
respect to the multiplicities of their roots. For a clarification of our terms, we
repeat and complete a notation we introduced in Section 4:

Definition 8

(1) Let u ∈ Q[x] and v ∈ Q[y]. By R(u) we denote the set of real roots of u.
By Grid(u, v) we mean the grid R(u)×R(v).

(2) Let f, g ∈ Q[x, y], X = res(f, g, y), and Y = res(f, g, x). We call the pair
(X, Y) the bi-resultant of f and g.

Of course we can also apply other criteria than the multiplicity of the roots
of the resultants in order to factor X and Y . Therefore our notation is in a
more general way:

Definition 9 Let f, g ∈ Q[x, y], u1, u2 ∈ Q[x] and v1, v2 ∈ Q[y]. We call
the expression (u1, v1) · (u2, v2) a bi-factorization of the bi-resultant (X, Y) =
(res(f, g, y), res(f, g, x)) iff

(1) X = u1 · u2, Y = v1 · v2,
(2) and all intersection points of f and g lie on Grid(u1, v1)∪Grid(u2, v2).

The pairs (u1, v1) and (u2, v2) are called bi-factors.

The problem we are still left with is that we do not know how to compute

(1) non-singular tangential intersections that lead to roots of multiplicity
greater than 2 in the resultant and

(2) singular points

inside a box. Our two tools developed so far, namely simple and extended box
hit counting, do not always reliably lead to a correct result in these cases. We
next give a general criterion how to determine an intersection point of two
curves, including the case that it can be a singular point of one curve, under
the assumption that its defining bi-factor has a special form. We will see in
the next section that for all points mentioned above such special bi-factors
can always be computed 1 .

Let again f and g be two bivariate polynomials. Let additionally (u, v) be a
bi-factor of (res(f, g, y), res(f, g, x)), u and v being polynomials of degree at

1 Of course all non-singular tangential intersections at which the branches of the
two curves cross each other could also be determined by simple box hit counting.
But to keep the algorithm simple we do not make this case distinction.

28

most 2:

u(x) = aux
2 + bux+ cu , v(x) = avy

2 + bvy + cv.

We assume that some kind of partial bi-factorization gave us these two rational
polynomials u and v. In this case we can compute the real roots of u and v
explicitly as one-root expressions:

x1,2 =− 1

2au

· (bu ±
√
b2u − 4aucu)) =: − 1

2au

· (bu ± √
a)

y1,2 =− 1

2av

· (bv ±
√
b2v − 4avcv)) =: − 1

2av

· (bv ±
√
b).

In order to determine whether f and g intersect in one of the points (xi, yj) we
just have to test whether f(xi, yj) = 0 = g(xi, yj). Testing simple square-root
expressions for zero can be made by using root separation bounds, for example
realized in the LEDA real class [47]. So if there are quadratic polynomials
u, v ∈ Q the roots of which define boxes in the plane, then we can explicitly
test each box for an intersection point. We call this method explicit solutions.

Assume for example we know a quadratic bi-factor (u, v) of (X, Y) describing
the two self-intersection points in Figure 13. In this case we are able to compute
the behavior of the curves directly on the grid Grid(u, v).

y2

x1 x2

1y

fy

fy
f f

Fig. 13. We can explicitly compute the grid points Grid(u, v)

Of course this method of computing explicit solutions can also be applied to
quadratic polynomials that are not rational but defined over a field extension
Q(
√
ρ) for some ρ ∈ Q.

29

6 Singular points of cutcurves

In this section we will attack the problem of distinguishing in advance boxes
that potentially contain singular points from the ones that cannot contain such
a point. As an immediate result we will obtain that, in our special arrange-
ments we obtain from projecting quadric intersection curves into the plane,
every singular point can be determined using explicit solutions. In the follow-
ing we will focus on singular points of cutcurves because, as we will see in the
next section, silhouettecurves pose no problem.

As always we will assume that all pairs of quadrics we consider are generally
aligned, squarefree, and coprime. Moreover we assume that all pairs of curves
are well-behaved.

Every cutcurve f = res(p, q, z) is the result of projecting the intersection
curve of two quadrics p and q into the plane. We assume p and q to be of
total degree 2. Otherwise we are in the easy case that the cutcurve is a planar
quadratic curve that can be treated the same way as a silhouettecurve.

If (a, b) ∈ C2 is a point on the cutcurve f := res(p, q, z), then general alignment
of p and q guarantees the existence of a number c ∈ C with p(a, b, c) =
q(a, b, c) = 0. We will show next that (a, b) is a singular point of f if and only
if

(1) p and q share another common root (a, b, c′) 6= (a, b, c) which by Theo-
rem 2 mathematically means sres1(p, q, z)(a, b) = 0

(2) or p and q intersect tangentially in (a, b, c) which can be expressed by
0 = (pxqz − pzqx)(a, b, c) = (pyqz − pzqy)(a, b, c) = (pxqy − pyqx)(a, b, c),
remember Section 3.

For illustration of the first case have a look at the left picture of Figure 14. The
spatial curve running on the ellipsoid is the intersection curve of the quadrics
R and B in our overall example. It consists of two branches, one on the upper
and one on the lower part of the ellipsoid R. The two branches are projected on
top of each other causing two singular points, namely self-intersection points.
The second case is illustrated in the right picture. The two ellipsoids have a
tangential intersection in space. In this point already the spatial intersection
curve has a singular point. This singular point will be projected into the plane.

Definition 10 Let f = res(p, q, z) be a cutcurve defined by the quadratic poly-
nomials p, q ∈ Q[x, y, z]. Let (a, b) ∈ C2 be a point on the cutcurve that origi-
nates from the intersection point (a, b, c) of p and q. If sres1(p, q, z)(a, b) = 0,
we call (a, b) a top-bottom point. If 0 = (pxqz − pzqx)(a, b, c) = (pyqz −
pzqy)(a, b, c) = (pxqy − pyqx)(a, b, c), we call (a, b) genuine.

30

Fig. 14. Top-bottom points result from the projection. Genuine points are caused
by tangential intersections in space.

Theorem 11 Let f be a cutcurve that originates from two generally aligned
quadrics p and q. The singular points of f are exactly the top-bottom and
genuine points of f .

PROOF. Without loss of generality let (0, 0) be a point of f which originates
from the intersection point (0, 0, 0) of p and q. The resultant computation is
invariant under translation along the z-axis. A translation of p and q along
the x- or y-axis just causes the same translation of the resultant.

Without loss of generality the polynomials p and q have the form p = z2+p1z+
p0 and q = z2 + q1z + q0 where pi ∈ Q[x, y] and qi ∈ Q[x, y] are polynomials
of degree at most 2− i. Taking partial derivatives we obtain the equalities

p0 = p(x, y, 0) =: p|z=0

p1 = pz(x, y, 0) =: pz|z=0

q0 = q(x, y, 0) =: q|z=0

q1 = qz(x, y, 0) =: qz|z=0.

Computing the resultant of p and q leads to the expression

f = res(p, q, z) = (pqz − pzq)|z=0 · sres1(p, q, z) + ((p− q)|z=0)
2.

For a polynomial p ∈ C[x, y, z] it is obvious that taking the partial derivative
with respect to a variable x 6= z and then substituting z = 0 is the same as first
substituting z = 0 and then taking the partial derivative: (px)|z=0 = (p|z=0)x.
Due to our assumption we have p(0, 0, 0) = q(0, 0, 0) = 0. This leads to

fx(0, 0) = ((pxqz − pzqx)|z=0 · sres1(p, q, z))(0, 0)

fy(0, 0) = ((pyqz − pzqy)|z=0 · sres1(p, q, z))(0, 0).

We immediately obtain that a top-bottom or genuine point of f is a singular
point of f . For the other inclusion it remains to show the following: If (0, 0)

31

is a singular point of f but not a top-bottom point, then also 0 = (pxqy −
pyqx)(0, 0, 0).

If at least one of qz or pz does not vanish at (0, 0, 0), without loss of generality
qz, this is easy to see: From qz(0, 0, 0) 6= 0, 0 = (pxqz − pzqx)(0, 0, 0), and

0 = (pyqz−pzqy)(0, 0, 0) it follows px(0, 0, 0) =
(

pz

qz
qx

)
(0, 0, 0) and py(0, 0, 0) =(

pz

qz
qy

)
(0, 0, 0). This leads to

(pxqy − pyqx)(0, 0, 0) =

(
pz

qz
qxqy − pz

qz
qyqx

)
(0, 0, 0) = 0.

Under our assumption that (0, 0) is not a top-bottom point, pz(0, 0, 0) =
0 = qz(0, 0, 0) cannot occur. Otherwise p(0, 0, z) and q(0, 0, z) would have a
common factor of degree 2, namely z2, and therefore the first subresultant of
p and q would vanish at (0, 0), leading to a contradiction. 2

Projecting two intersection points in space on top of each other or projecting a
tangential intersection point in space are exactly the events that cause singular
points of a cutcurve. Of course, a singular point can be top-bottom as well as
genuine.

6.1 Top-bottom points

We will prove that under our conditions of general alignment and squarefree-
ness a cutcurve f can have at most 2 top-bottom points. These 2 points can
be determined using explicit computation as described in the previous section.

Theorem 12 Let f ∈ Q[x, y] be a generally aligned and squarefree polynomial
which defines a cutcurve. Then f can have at most 2 top-bottom points.
Moreover, one can compute two at most quadratic polynomials utb ∈ Q[x] and
vtb ∈ Q[y] such that the top-bottom points lie on Grid(utb, vtb).

PROOF. Let p, q ∈ Q[x, y, z] be two quadratic polynomials and f the square-
free part of res(p, q, z). Without loss of generality we denote p = z2 + p1z+ p0

and q = z2 + q1z + q0 where pi, qi ∈ Q[x, y] are polynomials of degree at most
2− i.

The first subresultant of p and q with respect to z is of the form l :=
sres1(p, q, z) = q1 − p1. That means l is a polynomial of degree at most 1.
By definition, all intersection points of f and l are top-bottom and therefore
by Theorem 11 singular points of f . The curve f is assumed to be squarefree.
That means f has only finitely many singular points and because of that l

32

cannot be the zero-polynomial. If l is constant and non-zero, then there are
no intersection points of f and l. In this case f has no top-bottom point and
we are done.

So let us consider the case that l is a polynomial of total degree 1 defining
a line. We assume without loss of generality that l is generally aligned. The
resultant res(f, l, y) ∈ Q[x] is not the zero polynomial (f is squarefree) and
has degree at most 4. By Theorem 4 each root of the resultant res(f, l, y) has
multiplicity ≥ 2 because it results from a singular point of f through which
also l cuts and this by definition is a tangential intersection point of f and l.
That means f and l intersect in at most 2 points. We finally conclude that
the polynomial

utb = gcd(res(f, l, y),
d

dx
res(f, l, y))

has degree at most 2 and contains the x-coordinates of the top-bottom points.
Analogously one can compute the polynomial vtb using res(f, l, x). 2

6.2 Genuine points

Next we will consider genuine points. We will prove that their number is
bounded by 4 and we will give the algorithmic ideas how to determine them.

Theorem 13 Let p, q ∈ Q[x, y, z] be generally aligned with respect to z, co-
prime, and squarefree. Furthermore let f be generally aligned and the square-
free part of res(p, q, z).
The cutcurve defined by f can have at most 4 genuine points. If it has more
than 2 genuine points, f consists of two distinct lines and another quadratic
curve, all of them not necessarily rational.

PROOF. Let A = (αx, αy, αz), B = (βx, βy, βz), and C = (γx, γy, γz) be
three distinct tangential intersection points of p and q. We will show that
f = res(p, q, z) consists of two lines and another quadratic curve and has at
most 4 genuine points.

We will first prove by contradiction that the three points A, B, and C cannot
be collinear. So assume A, B, C to be collinear and let l be the line in space
passing through them. We will prove that in this case each point on l is a
tangential intersection point of p and q. That means f has infinitely many
singular points, contradicting its squarefreeness.

For our investigations the location of l in space is not important. So we assume
without loss of generality A = (αx, 0, 0), B = (βx, 0, 0), and C = (γx, 0, 0).
The polynomials p(x, 0, 0), q(x, 0, 0) have degree at most 2 and we know three

33

different roots, namely αx, βx, and γx. We conclude that p(x, 0, 0) and q(x, 0, 0)
both are equal to the zero polynomial and therefore every point D = (x, 0, 0)
of l is an intersection point of p and q. We define p1(x) := (pxqy−pyqx)(x, 0, 0),
p2(x) := (pxqz − pzqx)(x, 0, 0), and p3(x) := (pyqz − pzqy)(x, 0, 0), remember
the definition of a tangential intersection point in Section 3. Every pi ∈ Q[x]
is the zero-polynomial because by construction pi has degree at most 2 and
we know the three different roots αx, βx, and γx. We derive that every point
D = (x, 0, 0) of l is a tangential intersection point of p and q.

We know that A, B, and C are not collinear and therefore there exists a
uniquely defined plane h through these three points. Let us first consider
the case that h is a factor of p or q. It cannot be a factor of both because
by assumption p and q have disjoint factorizations. Assume without loss of
generality p = h · h̃. Then the spatial intersection curve c of p and q consists
of two conics s and s̃ embedded on h and h̃, respectively. The points of c that
cause genuine points in the plane are its singular ones. These are exactly the
intersection points of s and s̃ plus the singular points of s plus the singular
points of s̃.

There can be at most two intersection points of s and s̃: They lie on the
line l = {(x, y, z) ∈ C3|h(x, y, z) = h̃(x, y, z) = 0} and we know that no
3 tangential intersection points of p and q are collinear. The curve f has 3
genuine points, so we conclude that at least one of s or s̃ must have a singular
point. A planar quadratic curve has a singular point if and only if it consists
of two (maybe complex) intersecting lines. We conclude that c consists of two
intersecting lines and another quadratic curve and so does its projection f :
f = f1 · f2. The two quadratic curves f1 and f2 are not necessarily rational
because they are the projected intersection curves of h and q and of h̃ and q,
respectively, and h and h̃ are not necessarily rational. Furthermore we deduce
that c has at most 4 singular points and therefore f has at most 4 genuine
points.

The case we have not discussed so far is that the tangential intersection points
A, B, and C of p and q are not collinear and h is neither a factor of p nor of q.
Then the spatial intersection curves of h and p and of h and q are quadratic. So
on h there are two quadratic planar curves that have 3 tangential intersection
points. This can only happen if both curves are identical. Let us denote this
curve by s. We conclude that there exists another spatial quadratic curve s̃
such that p and q intersect in s and s̃. Due to our assumption of f being
squarefree we have s 6= s̃. That means there exists another plane h̃ 6= h
such that s and s̃ are embedded on h and h̃, respectively. Let r := h · h̃. By
construction the spatial intersection curve of p and q equals the one of p and
r. That means we have reduced this case to the previous one where h is a
factor of one of the quadrics. 2

34

Fig. 15. The cutcurve consists of two intersecting lines and another conic. There are
at least 3 genuine points, marked by the circles. The remaining singular points are
top-bottom points and marked by the squares.

The statement of the theorem is that in most cases a squarefree cutcurve has
at most 2 genuine points. Bad things only happen if the cutcurve consists of
two lines and another quadratic curve as shown in Figure 15. A close look at
the proof shows that in these cases the underlying spatial intersection curve
consists of two lines and another quadratic spatial curve, each embedded in a
plane. Let h and h̃ be these two planes and r := h · h̃. At most 2 tangential
intersection points lie on the intersection line l of h and h̃ and at most 2 do
not.

It would be quite useful to know r because the line defined by the polynomial
res(r, rz, z) is the projection of l. With the help of this line the genuine points
could be classified: the ones that lie on the line and the ones that do not. Each
group has at most two members. As we did for top-bottom points we could
factor the resultants on the x- and y-axis according to this distinction leading
to quadratic polynomials as desired.

Theorem 14 Let p and q be two quadrics in space.

(1) If f = res(p, q, z) consists of two lines and another quadratic curve not
equal to two lines, then there exists a polynomial r ∈ Q[x, y, z] defining
two planes such that f = res(p, r, z).

(2) If f = res(p, q, z) consists of four lines, then there exists a polynomial
r ∈ Q(

√
ρ)[x, y, z], for some ρ ∈ Q, defining two planes such that f =

res(p, r, z).

In both cases we can compute r.

PROOF. We omit a detailed proof which can be found in [70]. This result
is not new. It is part of the theory of quadric pencils and already discussed
in [33]. Using the classification of intersection curves made there, one derives
that in our first situation exactly one quadric r defining two planes is in the

35

quadric pencil of p and q. So necessarily r is rational. In the second case there
are two such quadrics r1 and r2 in the pencil and because of this r1 and r2 are
polynomials over a field extension Q(

√
ρ). 2

7 Computing the planar arrangements

Now we have finished all preliminary considerations and we will prove our
main theorem: Given a set of n input quadrics, we can exactly determine
the event points in each of the n planar arrangements that arise from the
projection phase.

Theorem 15 Let P = {p1, . . . , pn} be a set of trivariate quadratic polynomi-
als. For 1 ≤ i ≤ n let Fi be the set of curves in the i-th planar arrangement we
obtain from the projection phase: Fi = {res(pi, (pi)z, z)} ∪⋃

i6=j{res(pi, pj, z)}.
Let furthermore f and g be a pair of polynomials with either f, g ∈ Fi or
f ∈ Fi and g = fy.

For f and g we can compute a set of k rational boxes that is in 1-1 correspon-
dence to the set of real intersection points of the curves defined by f and g.
The jth real intersection point (αj, βj) of f and g is the only one inside the
jth box. Moreover we can determine whether the intersection point inside a
box is transversal or tangential, whether the two curves cross each other, and
whether it is a singular point of one of the curves.

In the following we will prove the theorem: for all curves f ∈ Fi in a planar
arrangement the intersection points of f and g = fy and the ones of f ∈
Fi and g ∈ Fi can be determined. We do this either by applying box hit
counting arguments or by partially factoring the bi-resultant of f and g and
computing explicit solutions. The second method is used to compute non-
singular tangential intersections that lead to roots of multiplicity greater than
2 in the resultant and to determine singular points. For these points box hit
counting does not always reliably lead to a correct result. According to the
distinction of the curves in Fi into silhouettecurve and cutcurves there are
four different kinds of pairs of curves f and g that have to be considered, each
treated in one subsection.

We assume without loss of generality that all pairs of curves are well-behaved.
That means all curves are generally aligned, squarefree, coprime, and in gen-
eral relation. The way these conditions are tested and realized is described in
the next section.

Let in the following X := res(f, g, y) and Y := res(f, g, x).

36

7.1 f is the silhouettecurve and g = fy

If f is the silhouettecurve and g = fy, then we know that both resultants X
and Y have degree at most 2. That enables us to compute explicit solutions.
Consider also the left picture in Figure 16.

g=fy

f

g=fy

f f

g

l

Fig. 16. For the extreme and singular points of the silhouettecurve f (left picture) we
can compute explicit solutions. If f is a cutcurve (right picture) we do a multiplicity
bi-factorization. Transversal intersections lie inside light grey boxes, tangential in-
tersection points lie inside dark grey boxes. The line l cuts through the top-bottom
points.

7.2 f is a cutcurve and g = fy

In the case f is a cutcurve and g = fy is its partial derivative, the resultants
X and Y have degree at most 12. We compute a multiplicity bi-factorization
(u1, v1) · (u2, v2) of (X, Y) such that all intersection points with multiplic-
ity 1, i.e. all transversal intersection points, lie on Grid(u1, v1). All intersec-
tion points with multiplicity ≥ 2, i.e. all tangential intersection points, lie on
Grid(u2, v2). For illustration have a look at the right picture of Figure 16.

The light grey boxes around Grid(u1, v1) can be handled with simple box hit
counting as shown in Chapter 5.

The dark grey boxes around Grid(u2, v2) are the candidate boxes for tan-
gential intersections. Unfortunately, a tangential intersection point of f and
g = fy is not necessarily a singular point of f . By definition, an intersection
point (a, b) ∈ C2 of f and g is tangential if and only if (fxgy − fygx)(a, b) =
(fxfyy − fyfxy)(a, b) = (fxfyy)(a, b) = 0. The last but one equality holds be-
cause (a, b) is a point of g = fy and therefore fy(a, b) = 0. We conclude that
there are two kinds of tangential intersection points:

(1) Singular points of f , that means fx(a, b) = 0, and

37

(2) non-singular points of f with fyy(a, b) = 0. We call these points vertical
flat points. A vertical flat point is either a vertical turning point of f
(fyyy(a, b) 6= 0) or an extreme point of f (fyyy(a, b) = 0).

The existence of vertical flat points is not caused by the geometry of our curves
but by our chosen coordinate system. In the remaining part of this subsection
we will provide an algorithm that factors (u2, v2) in absence of vertical flat
points such that each of its bi-factors (uf , vf) is of degree at most 2. If one
of the resulting bi-factors has a higher degree, we know that this is caused by
vertical flat points. In this case we shear f and g to get rid of the situation
and restart, see also Section 8.

For every quadratic bi-factor (uf , vf) we can compute explicit solutions. Of
course it can happen that a point (a, b) we computed explicitly this way is
a vertical flat point of f instead of a singular point. In order to recognize
this, we substitute (x, y) by (a, b) in fx and explicitly test fx(a, b) for zero. If
fx(a, b) = 0, (a, b) is a singular point of f . Otherwise it is a vertical flat point
and we explicitly test fyyy(a, b) for zero in order to distinguish vertical turning
points of f from extreme points of f .

We promised to provide an algorithm that factors (u2, v2) into bi-factors which
are at most quadratic. Using gcd-computation we first make u2 and v2 square-
free. According to Theorem 12 we compute the first bi-factor (utb, vtb) of
(u2, v2) splitting off the top-bottom points of f : (u2, v2) = (utb, vtb) · (ug, vg).
Both polynomials in (utb, vtb) have degree at most 2. In our example all tan-
gential intersection points are top-bottom. The yellow line l, which is the first
subresultant of the involved spatial quadrics, cuts through them, see Figure 16.

In the case that ug as well as vg are at most quadratic polynomials, as in our
example, everything is fine and we compute explicit solutions also for (ug, vg).

Now consider the case that ug or vg or both have degree > 2. We assumed
that all curves we consider are squarefree. We conclude according to Theorem
13 that (in the absence of vertical flat points) the cutcurve consists of two
intersecting lines and a conic. Let p and q be the quadrics with f = res(p, q, z).
We compute the quadric pencil of p and q and look for a pair of planes h and
h̃ in this pencil. If we cannot find such a pair of planes, we know that we
are in degenerate situation caused by vertical flat points and we proceed as
described before. Otherwise we can compute a polynomial r = h · h̃ with
either r ∈ Q[x, y, z] or r ∈ Q(

√
ρ)[x, y, z], ρ ∈ Q. In the discussion after

the proof of Theorem 13 we noticed that at most 2 genuine points lie on
the line l = res(r, rz, z) and at most 2 genuine points do not lie on l. As in
the case of top-bottom points, we use l to factor off these points: (ug, vg) =
(ug1, vg1) · (ug2, vg2). In the absence of vertical flat points all polynomials in
this partial bi-factorization are at most quadratic.

38

7.3 f is the silhouettecurve and g is a cutcurve

Let f be the silhouettecurve and g be a cutcurve. The polynomials X and
Y have degree at most 8. This implies that there are at most two roots of
multiplicity ≥ 3. We compute a bi-factorization (u1, v1) · (u2, v2)

2 · (u3, v3) of
(X,Y) such that u1, v1 contain all simple roots, u2, v2 all roots of multiplicity
2, and u3, v3 all roots of multiplicity ≥ 3.

All transversal intersections points lie on grid(u1, v1) and can be solved with
simple box hit counting.

The ones lying on grid(u2, v2) either are singular points of f or g or they are
transversal intersections of the Jacobi curve h = fxgy − fygx and f and of h
and g, according to Theorem 7.

We would like to apply extended box hit counting to these boxes, but first
we have to be sure that there is no singular point inside the tested box. In
the last section we have shown how to compute quadratic bi-factors (utb, vtb),
(ug1, vg1), and (ug2, vg2) for all singular points and compute explicit solutions.
If any of these bi-factors has a common bi-factor with (u2, v2), we split off this
common bi-factor. What remains is a bi-factor (u′2, v

′
2) with only non-singular

tangential intersections of f and g on its grid. We apply extended box hit
counting to the boxes defined by u′2 and v′2.

Because of the degree of X and Y the bi-polynomial (u3, v3) has at most two
different roots. With the help of gcd-computation we compute two at most
quadratic polynomial u′3 and v′3 containing them and apply explicit solutions.

7.4 f and g both are cutcurves

Let f and g both be cutcurves. They are the result of intersecting a quadric p
with other quadrics q and r, respectively. Each cutcurve has algebraic degree
≤ 4 and therefore the polynomials X and Y have degree at most 16. We
would like to compute a bi-factorization (X, Y) = (us, vs) · (ua, va) such that
all polynomials us, vs, ua, va have degree at most 8 and the polynomials us and
ua and the polynomials vs and va share no common factor.

Let us assume we have such a bi-factorization. Then for (us, vs) and for (ua, va)
we can proceed exactly like in the case of a silhouettecurve and a cutcurve
described in the previous section. We perform a bi-factorization according to
the multiplicities 1, 2, and ≥ 3. Again a polynomial of degree 8 can have
at most two roots of multiplicity ≥ 3. According to the assumption that
us, ua and vs, va have no common roots, the boxes belonging to multiplicity

39

1 can be handled with simple box hit counting. The boxes defined by roots
of multiplicity 2 are solved with extended box hit counting, after we split off
the singular points of f or g. The remaining bi-factor belonging to roots of
multiplicity ≥ 3 defines at most 4 grid points that are solvable with explicit
solutions.

What remains to do is to establish the bi-factorization (X,Y) = (us, vs) ·
(ua, va) such that each involved polynomial has degree ≤ 8. As for singular
points, we can distinguish two different types of intersection points for f and
g: spatial and artificial.

Definition 16 Let (a, b) ∈ C2 be an intersection point of two curves f =
res(p, q, z) and g = res(p, r, z) with p, q, r being quadratic trivariate poly-
nomials. We call (a, b) spatial, if for a root c of p(a, b, z) ∈ C[z] we have
p(a, b, c) = q(a, b, c) = r(a, b, c) = 0. If p(a, b, z) ∈ C[z] has the two roots c and
c′ and it holds p(a, b, c) = q(a, b, c) = 0 and p(a, b, c′) = r(a, b, c′) = 0, then we
call (a, b) artificial.

k

b
~

b
~

r~

~g

r

b b

g

b

b

g

Fig. 17. Projections of common intersection points of the curves b̃ and g̃ are called
spatial.

Spatial points are projected common intersection points of p, q, and r. Arti-
ficial points are a result of the projection phase. For illustration have a look
at Figure 17. Intersection points of the spatial curves b̃ and g̃ are common
points of the quadrics R, B, and G in our permanent example. There are two
such intersection points, marked by the arrows. Projecting both curves into
the plane results in the cutcurve b and g that have 6 real intersection points:
2 spatial and 4 artificial. The curve k is the projection of the intersection
curve of the ellipsoids B and G. By definition we know that it cuts through
the spatial points. Of course it can happen that points are both spatial and
artificial.

40

Theorem 17 Two cutcurves have at most 8 spatial and at most 8 artificial
intersections, counted with multiplicities.

PROOF. Let as before f = res(p, q, z) and g = res(p, r, z) be the cutcurves.
The bound for their spatial intersections immediately follows by the theo-
rem of Bézout. Three quadrics in space can have at most 8 discrete common
intersection points, counted with multiplicities.

For proving the second bound we proceed as follows: We mirror q parallel to
the z-axis at the plane pz = 0. Without loss of generality let the polynomial p
be of the form p = z2 + p1z+ p0 with pi ∈ Q[x, y] of degree 2− i, i = 1, 0. The
function f : C3 → C3, f(a, b, c) = (a, b,−p1(a, b) − c) mirrors points (a, b, c)
vertically at the plane pz = 2z + p1(x, y). If we apply this function to every
point of a quadric q = z2 + q1z + q0 this leads to the quadratic polynomial
q̃ = z2 + (2p1 − q1)z + (p2

1 − p1q1 + q0).

It is easy to verify that res(p, q̃, z) = res(p, q, z). That means all intersection
points of p and q̃ have the same (x, y)-coordinates as the intersection points
of p and q. But the intersection points of p and q that lie on the top of p
now lie on its bottom and vice versa. So the spatial and artificial intersections
have changed place and we can again apply the theorem of Bézout to p, r and
q̃. 2

Now we know that there are at most 8 spatial and artificial intersection points,
we would like to compute a bi-factorization (us, vs)·(ua, va) of (X, Y) according
to this distinction. We want the roots of us to be the x-coordinates of common
intersection points of p, q, and r. One way would be to additionally compute
the resultant k = res(q, r, z) and perform a greatest common divisor compu-
tation between X, res(f, k, y), and res(g, k, y). Caused by the projection from
space to the plane it can happen that k cuts through an artificial intersection
point of f and g. Then the x-coordinate of this artificial point would be a root
of us, contradicting our goal. This would not disturb our following algorithm
as long as the degree of us would still be at most 8. Otherwise, similar to the
methods described in the next section, we could shear the spatial arrangement
in order to remove this effect.

An alternative way to compute us would be to use the results of [19], [29].
There a method for computing us directly from the spatial quadrics p, q, and
r with the help of multivariate resultants is provided.

41

8 Establishing the generality assumptions

In the previous sections we made assumptions on the location of the quadrics
in space and the curves in the plane in order to simplify the argumentation:
general alignment and general relation. We will present a method how to detect
the lack of the conditions and how to establish them with a random shear.

8.1 General alignment

Let P ⊂ Q[x, y, z] be a set of n quadrics. We want each trivariate polynomial
to have a constant non-zero coefficient of z2. This of course is easy to test
by just examining the coefficient of z2 for each p ∈ P . If the coefficient is
non-constant for at least one p, we will shear all quadrics. The main idea of a
shear method is described in [60].

We randomly choose a rational vector u = (u1, u2) ∈ Q2 and consider the
shear function φ(x, y, z) = (x+u1 · z, y+u2 · z, z). We compute p◦φ for each
p ∈ P . For nearly all choices of (u1, u2) we obtain generally aligned quadrics.
The geometry of the spatial arrangement is not effected by the shear. Inter-
section points of quadrics remain intersection points. They only change their
x- and y-coordinate. The drawback is that a shear causes a larger coefficient
size. This can have an impact on all following resultant and root isolation
computations. One way of choosing the shear parameter would be to bound
the number r of forbidden directions and then randomly choose the shear pa-
rameter from a range −r . . . r. With this strategy the probability of choosing
a bad direction would be at most 1/2. But as already stated in [27] this ap-
proach overestimates the failure probability in almost all cases. The strategy
proposed and implemented there is to start with a small parameter range that
does not increase the coefficient size too much and increase it depending on
the number of past failures.

We also want to have the property that all bivariate polynomials we consider
have a constant non-zero leading coefficient with respect to each variable. Let
F be the set of bivariate polynomials defining the curves in a planar arrange-
ment. Let us look at the polynomials in F as polynomials in the variable y.
Like in the case for the trivariate polynomials, we randomly choose a rational
number v ∈ Q. Applying the affine transformation ψ(x, y) = (x + v · y, y) to
each polynomial f ∈ F will result in a set of polynomials that have a constant
leading coefficient of y with very high probability.

We also want to have a constant leading coefficient of x. So in the same way, we
randomly choose a rational number w and apply the shear ψ̃(x, y) = (x, y +

42

w ·x) to each polynomial. It is easy to see that the constant leading coefficient
of y is not effected by this shear and so the second shear does not destroy the
effect of the first shear.

8.2 General relation of two planar curves

In our algorithm we want each pair of curves f and g to be in general relation.
Remember that f and g are defined to be in general relation with respect to x
or y if there are no two common roots with the same x- or y-value, respectively.
As vertical asymptotes, common coordinates of intersection points are not
intrinsic to the two curves. We can avoid it by choosing a different direction
of projection or by equivalently shearing the curves.

Let us look how to test general relation with respect to x. The test for y is
symmetric. A similar algorithm to the one we we will explain is described
in [63].

For the two curves f and g we look at their sheared versions at the time v:

f v(x, y) := f(x+ vy, y) , gv(x, y) := g(x+ vy, y).

Of course we can interpret f v and gv as polynomials in Q[x, y, v]. The resultant
res(f v, gv, y) ∈ Q[x, v] defines an arrangement of lines, the x-coordinates of the
intersection points of f and g walk along when we change the shear parameter
v, see Figure 18. That means the resultant factors over C in linear parts
l1, . . . , lk ∈ C[x, v] with k being an upper bound on the number of intersection
points of f and g: res(f v, gv, y) = lii1 · . . . · likk .

y v

xx

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

���

�	
� ���
�
������

Fig. 18. The x-coordinates of intersection points of two curves change linearly when
we shear.

During the shear each intersection point (a, b) ∈ C2 of f and g moves along
one of the lines lj, 1 ≤ j ≤ k. Each intersection point moves along a different
line. So the two curves f = f 0 and g = g0 have no two intersection points

43

with common x-coordinates if and only if there is no intersection point of
two of the lines on the x-axis. This is equivalent to the statement that there
are no factors la and lb in the complex factorization of res(f v, gv, y), a 6= b,
with la(x, 0) = lb(x, 0). The polynomials f and g are both generally aligned
and because of that (res(f v, gv, y))|v=0 = res(f, g, y). There is an intersection
point on the x-axis if and only if substituting v = 0 in the factorization of the
resultant (lii1 · . . . · likk)|v=0 differs from the factorization over C of res(f, g, y).

In practice we do not want to perform a complex factorization of res(f v, gv, y).
But we can compute its multiplicity factorization over Q analogously to the
one for univariate polynomials and then substitute v = 0. Here only gcd-
computations are performed and they can also be realized for bivariate poly-
nomials using pseudo-division [41]. And of course we can do a multiplicity
factorization of the univariate polynomial res(f, g, y). With our previous re-
marks it is easy to see that f and g are in general relation if and only if both
rational factorizations are equal.

9 Experimental results and outlook

We have developed a method for computing a cell in an arrangement of quadric
surfaces. It uses exact algebraic computation and provides the correct math-
ematical result in every case, even in a degenerate one.

We claimed that our theoretical results for computing arrangements of quadric
surfaces promise a good performance in practice. In order to justify our state-
ment, we made some experiments in implementing and testing our ideas. Until
now we have not mentioned the asymptotic time-complexity of our algorithm
which is O(n3 log n) for computing the n planar arrangements. Considering
the subsequent running times, the classical method of analyzing the running
time behavior for large n does not seem appropriate here. At this stage of
research the main problem when computing with curved objects is to realize
the algebraic predicates in an efficient way because these are the ones that
influence the running time most.
An approach of obvious importance to measure the complexity of our algo-
rithm would be to analyze its bit-complexity. However, a complete worst-case
analysis is impractical, see the number of case distinctions, and furthermore,
we expect no promising result from the known separation bounds that we
would need to apply for the (cascaded) root isolations. Our approach is not
tied to the worst case. Our methods benefit whenever a particular instance
does not require the isolating intervals to approach the separation bounds
limit but can stop earlier. Not only does the iteration stop earlier, e.g., in
the Uspensky method, but also the bit complexity of the interval boundaries
becomes smaller and subsequent steps are faster.

44

A first rather prototypical implementation determines event points in the pla-
nar arrangements induced by three quadrics. It uses the basic data types of
LEDA [47] and the rational polynomial class as well as the resultant and Sturm
sequence computation of MAPC [42].

Fig. 19. Screen shots for computing all event points in the three planar arrangements
for the quadrics p, q, and r.

Consider the screen shots in Figure 19 we made from the output for computing
the event points for the three input quadrics

p(x, y, z) = 7216x2 − 11022xy − 12220xz + 15624y2 + 15168yz

+11186z2 − 1000

q(x, y, z) = 4854x2 − 3560xy + 4468xz + 658x+ 5040y2 + 32yz + 1914y

+10244z2 + 3242z − 536

r(x, y, z) = 8877x2 − 10488xy + 9754xz + 1280x+ 16219y2 − 16282yz

−808y + 10152z2 − 1118z − 796.

45

The ellipses in the first row are the silhouettecurves of the input ellipsoids
p, q, and r. The line cutting through the extreme points is the respective
partial derivative. All extreme points are determined correctly and marked
by small boxes. In the second row first the extreme and then the singular
points are determined for each of the three cutcurves. Again the additional
curves are the partial derivatives. In the third row all tangential intersection
points between silhouettecurves and cutcurves are computed. In each picture
there is a third curve: the Jacobi-curve. In the last row we first compute all
artificial intersection points of pairs of cutcurves. The spatial points are the
common intersection points of all three cutcurves. They are computed in the
last picture.

The running time of our implementation for this special example on an Intel
Pentium 700 is about 18 seconds. Of course the running time mainly depends
on the number of decimal digits of the three input quadrics as can be seen in
the following table:

number of digits 5 10 15 20 25 30

running time in seconds 18 33 56 92 126 186

The only mathematical tools that are used during the calculation are re-
sultants and subresultants, root separation, gcd of univariate and bivariate
polynomials, and solving quadratic univariate polynomials. The size of the
coefficients of the polynomials has a great impact on the behavior of all these
computations. In our example about half of the running time is spent on com-
puting all necessary resultants. Isolating the real roots on the coordinate axes
with Uspensky’s algorithm is quite fast. The rest of the time is needed to test
the more than 100 boxes for intersection points.

The first experimental implementation was just designed as a proof of concept
of our ideas. The resulting running times were promising enough to further
work on our approach. Very recently Eric Berberich [10] finished a second
implementation, see also [12]. This implementation is, although still ongoing
work, much more elaborated than the first prototypical one. It is based on the
Exacus software library [32] which provides all necessary mathematical tools
mentioned above. The main ideas of the underlying algorithm for computing
the event points, for example introducing the Jacobi curve to determine tan-
gential intersections and computing explicit solutions for the singular points,
are exactly the ones developed in this paper. It only differs and is improved
regarding the combinatorial approach. Based on the work and the implemen-
tation in Exacus of computing arrangements of cubic curves by Eigenwillig
[27] it directly performs a modified Bentley-Ottmann sweep-line algorithm for
the planar arrangements instead of inspecting quadratically many boxes. Be-
sides computing the projected planar arrangements it additionally performs

46

the step described in Section 4 of recovering the spatial information. It divides
each planar arrangement into two subarrangements, one running on the upper
and one on the lower part of the underlying quadric p. So at the end we have
the full information about the arrangement of the spatial intersection curves
on the surface of p. For example have a look at Figure 20.

Fig. 20. The arrangement of our overall example and split into upper and lower part

We only want to mention some of the benchmarks obtained for this second
implementation. For a detailed discussion consider [10]. The running times are
measured on a Pentium III Mobile 800. The used arithmetic number types are
the ones provided by LEDA [47]. The input tested with our first experimental
program now leads to the following running times:

number of digits 5 10 15 20 25 30

running time in seconds 1.1 2.7 5.0 7.8 12.1 16.1

One can observe that the running times have decreased by more than a factor
of 10 which does not only depend on the slightly newer computer. We want
to mention two additional benchmarks. The first one is concerning random
quadrics. The random quadrics have a bit size of 70. They are interpolated
through 9 points the coordinates of which are integers chosen from the range
[−48, 48]. In the table below one can see the increase of the running time
depending on n together with the increase of the vertices and edges that have
to be computed for all planar arrangements. One can observe that already for

47

n = 12 the latter is really large.

number of quadrics 4 8 12 16

number of vertices 474 2552 7544 13592

number of edges 1032 6702 21980 42168

running time in seconds 20.7 148.0 457.4 876.2

Also degenerate situations, for example where more than three quadrics inter-
sect in a common point and share the same tangential planes, were system-
atically created and tested. The degenerate quadrics in our benchmark again
have a bit size of 70 and the coordinates of the interpolation points are chosen
from the range [−48, 48]. All n quadrics are chosen in such a way that their
intersection curves intersect at common points with multiplicity one, two or
three.

number of quadrics 4 8 12

number of vertices 378 2330 5594

number of edges 836 5956 15480

running time in seconds 35.8 293.7 1138.0

The implementations show that our algorithm is a first and important step to-
wards exact and efficient computation of arrangements of curves and surfaces.
Until now we have made no special efforts to optimize the running time of
our implementation. Making use of filtering techniques and applying more so-
phisticated algebraic methods will surely lead to a better performance. Above
that, of course, there is still some work in practical as well as in theoretical
sense. So far our implementation only determines the arrangements of inter-
section curves on the surface of each quadric. Part of our future work will
be to combine these results in order to describe a single cell or the overall
arrangement of the quadrics in space.

Until now we do not have any results concerning the algebraic degree of our
predicates. We want to investigate this in the future although it is not quite
clear whether this will lead to satisfying results due to the large number of
case distinctions.

Our approach provides an efficient and exact algorithm for computing a cell in
an arrangement of quadric surfaces, even in degenerate cases. It is general in
the sense that it could be applied to every kind of spatial surfaces defined by
rational polynomials. So another topic of our future research will be to extend
our approach to more general algebraic surfaces.

48

Acknowledgements

The authors thank Raimund Seidel for useful discussions and suggestions and
Michael Hemmer for providing the spatial images he rendered for the video
[36]. We want to express our special gratitude to our anonymous referees for
their valuable comments which have helped a lot to improve the paper.

References

[1] S. Abhyankar and C. Bajaj. Computations with algebraic curves. In Proc.
Internat. Sympos. on Symbolic and Algebraic Computation, volume 358 of
Lecture Notes Comput. Sci., pages 279–284. Springer-Verlag, 1989.

[2] P. K. Agarwal and M. Sharir. Arrangements and their applications. In J.-
R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages
49–119. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

[3] S. Arnborg and H. Feng. Algebraic decomposition of regular curves. J. Symbolic
Comput., 15(1):131–140, 1988.

[4] D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic
decomposition I: The basic algorithm. SIAM J. Comput., 13(4):865–877, 1984.

[5] D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical algebraic
decomposition II: The adjacency algorithm for the plane. SIAM J. Comput.,
13(4):878–889, 1984.

[6] D. S. Arnon, G. E. Collins, and S. McCallum. An adjacency algorithm for
cylindrical algebraic decomposition in three-dimensional space. J. Symbolic
Comput., 5(1–2):163–187, 1988.

[7] D. S. Arnon and S. McCallum. A polynomial time algorithm for the topological
type of a real algebraic curve. J. Symbolic Comput., 5:213–236, 1988.

[8] C. Bajaj and M. S. Kim. Convex hull of objects bounded by algebraic curves.
Algorithmica, 6:533–553, 1991.

[9] J. L. Bentley and T. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput., C-28:643–647, 1979.

[10] E. Berberich. Exact Arrangements of Quadric Intersection Curves. Universität
des Saarlandes, Saarbrücken, 2004. Master Thesis.

[11] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and
E. Schömer. A computational basis for conic arcs and boolean operations
on conic polygons. In ESA 2002, Lecture Notes in Computer Science, pages
174–186, 2002.

49

[12] E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and N. Wolpert. An exact,
complete and efficient implementation for computing planar maps of quadric
intersection curves. In Proc. 21st Annu. ACM Sympos. Comput. Geom., pages
99–106, 2005.

[13] J.-D. Boissonat and J. Snoeyink. Efficient algorithms for line and curve segment
intersection using restricted predicates. In Proc. 15th Annu. ACM Sympos.
Comput. Geom., pages 370–379, 1999.

[14] J. Boissonnat and F. P. Preparata. Robust plane sweep for intersecting
segments. SIAM Journal on Computing, 23:1401–1421, 2000.

[15] W. Brown and J. F. Traub. On Euclid’s algorithm and the theory of
subresultants. Journal of the ACM, 18:505–514, 1971.

[16] J. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,
MA, 1987.

[17] T. Chan. Reporting curve segment intersection using restricted predicates.
Computational Geometry, 16:245–256, 2000.

[18] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. A singly exponential
stratification scheme for real semi-algebraic varieties and its applications.
Theoretical Computer Science, 84:77–105, 1991.

[19] E. Chionh, R. Goldman, and J. Miller. Using multivariate resultants to find the
intersection of three quadric surfaces. Transactions on Graphics, 10:378–400,
1991.

[20] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Proc. 2nd GI Conf. on Automata Theory and Formal
Languages, volume 6, pages 134–183. Lecture Notes in Computer Science,
Springer, Berlin, 1975.

[21] G. E. Collins and R. Loos. Real zeros of polynomials. In B. Buchberger,
G. E. Collins, and R. Loos, editors, Computer Algebra: Symbolic and Algebraic
Computation, pages 83–94. Springer-Verlag, New York, NY, 1982.

[22] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer,
New York, 1997.

[23] T. Culver, J. Keyser, M. Foskey, , S. Krishnan, and D. Manocha. Esolid - a
system for exact boundary evaluation. Computer-Aided Design (Special Issue
on Solid Modeling), 36, 2003.

[24] O. Devillers, A. Fronville, B. Mourrain, and M. Teillaud. Exact predicates for
circle arcs arrangements. In Proc. 16th Annu. ACM Symp. Comput. Geom.,
2000.

[25] D. P. Dobkin and D. L. Souvaine. Computational geometry in a curved world.
Algorithmica, 5:421–457, 1990.

50

[26] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean. A new algorithm for the
robust intersection of two general quadrics. In Proc. 19th Annu. ACM Sympos.
Comput. Geom., pages 246–255, 2003.

[27] A. Eigenwillig. Exact Arrangement Computation of Cubic Curves. Universität
des Saarlandes, Saarbrücken, 2003. Master Thesis.

[28] A. Eigenwillig, L. Kettner, E. Schömer, and N. Wolpert. Complete, exact, and
efficient computations with cubic curves. In Proc. 20th Annu. ACM Symp.
Comput. Geom., pages 409–418, 2004.

[29] D. Eisenbud and F.-O. Schreyer. Resultants and chow forms via exterior
syzygies. Journal of the American Mathematical Society, 16:537–579, 2003.

[30] I. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. Tsigaridas. Towards an
open curved kernel. In Proc. 20th Annu. ACM Symp. Comput. Geom., pages
438–446, 2004.

[31] I. Emiris and E. Tsigaridas. Comparing real algebraic numbers of small degree.
In ESA 2004, Lecture Notes in Computer Science, pages 652–663, 2004.

[32] The Exacus project.
www.mpi-sb.mpg.de/projects/EXACUS/.

[33] R. T. Farouki, C. A. Neff, and M. A. O’Connor. Automatic parsing of degenerate
quadric-surface intersections. ACM Trans. Graph., 8:174–203, 1989.

[34] E. Flato, D. Halperin, I. Hanniel, and O. Nechushtan. The design and
implementation of planar maps in cgal. In Proceedings of the 3rd Workshop
on Algorithm Engineering, Lecture Notes Comput. Sci., pages 154–168, 1999.

[35] N. Geismann, M. Hemmer, and E. Schömer. Computing a 3-dimensional cell in
an arrangement of quadrics: Exactly and actually! In Proc. 17th Annu. ACM
Sympos. Comput. Geom., pages 264–271, 2001.

[36] N. Geismann, M. Hemmer, and E. Schömer. The convex hull of ellipsoids. In
SOCG video track, 2001.

[37] D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, second edition, chapter 24,
pages 529–562. CRC Press LLC, Boca Raton, FL, 2004.

[38] C. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann, San Mateo,
CA, 1989.

[39] H. Hong. Efficient method for analyzing topology of plane real algebraic curves.
In Proceedings of IMACS-SC 93, (Lille, France), June 1993.

[40] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library for robust
numeric and geometric computation. In Proc. 15th Annu. ACM Sympos.
Comput. Geom., pages 351–359, 1999.

[41] G. L. Keith O. Geddes, Stephen R. Czapor. Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

51

[42] J. Keyser, T. Culver, D. Manocha, and S. Krishnan. MAPC: A library for
efficient and exact manipulation of algebraic points and curves. In Proc. 15th
Annu. ACM Sympos. Comput. Geom., pages 360–369, 1999.

[43] J. C. Keyser. Exact boundary evaluation for curved solids. Univ. of North
Carolina at Chapel Hill, Chapel Hill, 2000. Ph.D. dissertation.

[44] S. Lazard, L. M. Penaranda, and S. Petitjean. Intersecting quadrics: An efficient
and exact implementation. In Proc. 20th Annu. ACM Sympos. Comput. Geom.,
pages 419–428, 2004.

[45] J. Levin. A parametric algorithm for drawing pictures of solid objects composed
of quadric surfaces. Commun. ACM, 19(10):555–563, Oct. 1976.

[46] J. Levin. Mathematical models for determining the intersections of quadric
surfaces. Comput. Graph. Image Process., 11:73–87, 1979.

[47] K. Mehlhorn and S. Näher. LEDA – A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

[48] J. Miller and R. Goldman. Combining algebraic rigor with geometric robustness
for the detection and calculation of conic sections in the intersection of two
quadric surfaces. In Proceedings of the Symposium on Solid Modeling and
Applications, pages 221–231, 1991.

[49] J. R. Miller. Geometric approaches to nonplanar quadric surface intersection
curves. ACM Trans. Graph., 6:274–307, 1987.

[50] J. R. Miller and R. Goldman. Geometric algorithms for detecting and
calculating all conic sections in the intersection of any two natural quadric
surfaces. Graphical Models and Image Processing, 57:55–66, 1995.

[51] P. S. Milne. On the solutions of a set of polynomial equations. In Symbolic and
Numerical Computation for Artificial Intelligence, pages 89–102. 1992.

[52] B. Mishra. Computational real algebraic geometry. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
second edition, chapter 33, pages 743–764. CRC Press LLC, Boca Raton, FL,
2004.

[53] B. Mourrain, J.-P. Técourt, and M. Teillaud. On the computation of
an arrangement of quadrics in 3d. Computational Geometry: Theory and
Applications, 30:145–164, 2005. Special issue, 19th European Workshop on
Computational Geometry.

[54] K. Mulmuley. A fast planar partition algorithm, II. J. ACM, 38:74–103, 1991.

[55] K. Mulmuley. Computational Geometry. Prentice Hall, Englewood Cliffs, NJ,
1994.

[56] F. Nielsen and M. Yvinec. Output-sensitive convex hull algorithms of planar
convex objects. Internat. J. Comput. Geom. Appl., 8(1):39–66, 1998.

52

[57] T. Papanikolaou. LiDIA Manual - A Library for Computational Number
Theory. Universität des Saarlandes, Saarbrücken, 1995.

[58] P. Pedersen. Multivariate sturm theory. In Proceedings of Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, pages 318–323, 1991.

[59] F. P. Preparata and M. I. Shamos. Computational geometry and introduction.
Springer-Verlag, New York, 1985.

[60] D. Prill. On approximations and incidence in cylindrical algebraic
decomposition. Siam J. Comput., 15(4):972–993, 1986.

[61] A. Rege. A Toolkit for Algebra and Geometry. Univ. of California at Berkely,
Berkely, California, 1996. Ph.D. dissertation.

[62] T. Sakkalis. The topological configuration of a real algebraic curve. Bulletin of
the Australian Mathematical Society, 43:37–50, 1991.

[63] T. Sakkalis and R. T. Farouki. Singular points of algebraic curves. Journal of
Symbolic Computation, 9:405–421, 1990.

[64] O. Schwarzkopf and M. Sharir. Vertical decomposition of a single cell in a three-
dimensional arrangement of surfaces and its applications. Discrete Comput.
Geom., 18:269–288, 1997.

[65] C.-K. Shene and J. K. Johnstone. On the planar intersection of natural quadrics.
In Proc. ACM Sympos. Solid Modeling Found. CAD/CAM Appl., pages 233–
242. Springer-Verlag, 1991.

[66] J. Snoeyink and J. Hershberger. Sweeping arrangements of curves. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 6:309–349,
1991.

[67] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Univ. of
California Press, Berkely, 1951. second ed., rev.

[68] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 1999.

[69] R. Wein. High level filtering for arrangements of conic arcs. In ESA 2002,
Lecture Notes in Computer Science, pages 884–895, 2002.

[70] N. Wolpert. An Exact and Efficient Approach for Computing a Cell in an
Arrangement of Quadrics. Universität des Saarlandes, Saarbrücken, 2002. Ph.D.
Thesis.

[71] N. Wolpert. Jacobi curves: Computing the exact topology of arrangements of
non-singular algebraic curves. In ESA 2003, Lecture Notes in Computer Science,
pages 532–543, 2003.

[72] C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University
Press, New York, Oxford, 2000.

53

