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Abstract
The treatment of curved algebraic surfaces becomes more
and more the focus of attention in Computational Geome-
try. We present a video that illustrates the computation of
the convex hull of a set of ellipsoids. The underlying algo-
rithm is an application of our work on determining a cell
in a 3-dimensional arrangement of quadrics, see [3]. In the
video, the main emphasis is on a simple and comprehensible
visualization of the geometric aspects of the algorithm. In
addition, we give some insights into the underlying mathe-
matical problems.

The Algorithm
There are well known efficient and robust algorithms for the
calculation of the convex hull of a set of points or a set of
spheres ([1], [2]). In our video, we show how to compute
the convex hull of a set of ellipsoids with exact arithmetic
(Fig. 1, 2). The video consists of three different parts. First,
we illustrate how the problem of computing the convex hull
can be reduced to the problem of calculating a cell in a 3-
dimensional arrangement of quadrics. Next, a further reduc-
tion to planar arrangements and their treatment is visual-
ized. Finally, we show the connection between the topology
of the convex hull in the primal space and the topology of
the computed cell in the dual space.

Dualization
The problem of calculating the convex hull of a set of el-
lipsoids can be reduced via duality to the problem of com-
puting a cell in an arrangement of ellipsoids, paraboloids,
and hyperboloids, quadrics for short (Fig. 3). The quadrics
partition affine space in a natural way into four different
types of maximal connected regions: cells are on either side
of each quadric, faces lie on exactly one quadric, edges are
on the intersection curve of two quadrics and vertices are
intersection points of three or more quadrics. We have to
compute the boundary of the cell that lies in the interior
of each quadric, i.e. the boundary of the intersection cell

(Fig. 4). For further information about the dualization of
quadrics see [4]. The connection between the convex hull in
the primal space and the intersection cell in the dual space
is very well visualizable in two dimensions. This is what is
shown in the first part of the video (Fig. 5).
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Computing the Arrangement
In the next part the video shows how to compute the topo-
logical description of the intersection cell of a set of quadrics
exactly. The video illustrates the main procedure of the al-
gorithm. For the mathematical details we refer the reader
to [3]. We have implemented our algorithm. The following
pictures of the planar arrangements arise from the visual-
ization print-out during the execution of the program. We
realized the project using the basic data types of LEDA [6]
and the rational polynomial class as well as the resultant
computation of MAPC [5].

In order to compute the intersection cell, we determine
for each quadric a complete description of the arrangement
restricted to its surface (Fig. 6). It is easy to see that these
separate topological descriptions can be assembled to a uni-
fied one of the intersection cell with little combinatorial and
administrative effort. The problem is that in general there
is no rational parameterization of the intersection curve of
two quadrics. Therefore we project the boundary of the
quadric and all its intersection curves with other quadrics
into the (x, y)-plane (Fig. 7). This can be done using an alge-
braic tool called resultant and yields a set of planar algebraic
curves of degree at most 4 (Fig. 8). During the projection
we loose the spatial information but with the help of ray
shooting we can recover it afterwards.

Now we have to compute a topological description of the
planar arrangement. The most serious problem we face is
that usually the intersection points of two curves have ir-
rational coordinates. That is why we cannot deal with
them directly. Instead, we apply a resultant computation
to each pair of curves obtaining a univariate polynomial in
x. With a Sturm sequence computation we isolate the real
roots of the univariate polynomial. The rational intervals
bounding the real roots define small stripes with rational x-
coordinates, parallel to the y-axis that cover all intersection
points (Fig. 9). We do the same for the y-coordinates. The
intersection of the stripes yields boxes with rational corners
(Fig. 10).

Then we test whether an intersection point of the two
curves takes place inside a box or not. To decide this, we
only have at our disposal the discrete information of what
happens at the boundary of the box. This information may
be sufficient. For example, if there is no hit from any curve,
we know that there cannot be an intersection point inside.
Or, if there are two hits with each curve and these hits al-
ternate, we know that there must be an intersection point
inside the box (Fig. 11). But this method, called box-hit
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counting, is not always suitable: If we consider tangential
intersection points of two curves or self intersection points
of one curve, the scenario on the boundary of the box can-
not tell us anything about an intersection point inside the
box (Fig. 12, 13). We have developed a method to overcome
these difficulties by locally introducing a new curve to the
arrangement in the box and then again using box-hit count-
ing. This method will only fail in very few cases in which
we can apply a global criterion.

Correspondence between Primal and Dual Space
In the last part of our video we show how the intersection
cell in the dual space corresponds to the convex hull in the
primal space. A point in the dual space dualizes to a plane
in the primal space. What about a vertex (also called triple
intersection point in the video) in the dual space? Its dual
is a plane that touches each of the three involved ellipsoids
in exactly one point (Fig. 14). The three points define a
triangle and the area lying on the tangential plane bounded
by the triangle will be part of the convex hull. Analogously,
each point on an edge of the intersection cell defines a line
connecting the two involved ellipsoids (Fig. 15). All lines
together form a developable surface. So the convex hull
consists of three different types of surfaces: parts of the
original quadric surfaces, triangles which arise from the dual
vertices, and developable surfaces which arise from the dual
edges (Fig. 16).
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Computing a 3-dimensional cell in an arrangement of
quadrics: Exactly and actually! SOCG, 2001.

[4] C.-K. Hung and D. Ierardi. Constructing convex hulls
of quadratic surface patches. In Proc. 7th Canad. Conf.

Comput. Geom., pages 255–260, 1995.

[5] J. Keyser, T. Culver, D. Manocha, and S. Krishnan.
MAPC: A library for efficient and exact manipulation
of algebraic points and curves. In Proc. 15th Annu.

ACM Sympos. Comput. Geom., pages 360–369, 1999.
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