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Abstract. The alignment of noisy and uniformly scaled time series is an 
important but difficult task. Given two time series, one of which is a uniformly 
stretched subsequence of the other, we want to determine the stretching factor 
and the offset of the second time series within the first one. We adapted and 
enhanced different methods to address this problem: classical FFT-based 
approaches to determine the offset combined with a naïve search for the 
stretching factor or its direct computation in the frequency domain, bounded 
dynamic time warping and a new approach called shotgun analysis, which is 
inspired by sequencing and reassembling of genomes in bioinformatics. We 
thoroughly examined the strengths and weaknesses of the different methods on 
synthetic and real data sets. The FFT-based approaches are very accurate on 
high quality data, the shotgun approach is especially suitable for data with 
outliers. Dynamic time warping is a candidate for non-linear stretching or 
compression. We successfully applied the presented methods to identify steel 
coils via their thickness profiles. 

Keywords: time series, linear time warping, alignment, stretching factor, offset, 
FFT, bounded dynamic time warping, shotgun analysis, linear regression  

1   Introduction 

Given two time series X  and Y , where Y  is a subsequence of X  in the sense that, 
for a human observer, Y  looks similar to a part of X , we want to find an alignment 
of X  and . However, compared to Y X  the values of Y  are more or less distorted. 
What makes the problem worse is the fact that  is either stretched or compressed 
relative to its corresponding part of 

Y
X . Now, our aim is to align the two data series 

automatically, that means to find the counterpart of Y  within X  in spite of distortion 
and stretching or compression. To achieve this, we need to determine the offset and 
the stretching or compression factor of Y  relative to X . Figure 1 illustrates this situ-
ation: The two plotted data series look similar but are not easy to compare by a com-
puter because the thinner, brighter one is stretched relative to the thicker, darker one. 

This problem is highly relevant in practice, e.g., in steel production where the 
problem was posed and our test data comes from. All our methods can also deal with 



overlapping data series. The assumption that the second time series is part of the first 
one is not necessary but is true for the following practical example. 

In the production of steel, coils are important (semi-finished) goods. A coil is a flat 
wound up steel strip of a certain width and thickness and varying length from a few 
hundred up to several thousand meters. During the production process a coil passes 
through different machines and steps. It is repeatedly unwounded, lumbered, cut into 
pieces, welded together with parts of other coils and wound up again. In between the 
production steps the coils are stored in the company’s interim storage facility. In order 
to control the whole process and to retrace the origin of a certain piece of steel, it is 
important to be able to follow a coil and/or pieces of it throughout the whole 
production process. Therefore, the company iba AG in Fürth, Germany came up with 
the idea to derive a unique identification of each coil via its thickness profiles, the so 
called “fingerprints” [1], similar to the fingerprints which are unique for humans. The 
thickness of each coil is measured in certain fixed time intervals before and after each 
production step (e.g. every 10 ms). The varying throughput speed during this process 
is measured through the varying velocity of the rollers. So, it is possible to convert the 
time based data to locations on the steel strip – an information which is more interes-
ting in the context of quality control. Based on these measures the thickness of the 
coil at certain positions or in certain discrete distances (typically every ten centi-
meters) is calculated by linear interpolation. Two fingerprints of the same coil after 
one and before the next production step are always similar but not identical. Diffe-
rences arise due to different measuring devices, measuring inaccuracies, failure of 
measuring devices and the generally difficult circumstances of the production process 
(dirt, steam, large temperature differences and changes in the material). Surprisingly, 
some particular production steps (e.g. galvanization) do not change the fingerprint too 
much, so it is still possible to recognize the coil afterwards with our techniques. 

Inaccuracies in thickness measuring lead to vertical errors, inaccuracies in speed 
measurement cause horizontal displacements. Because of the latter ones, it is not 
possible to find the optimal starting position of the second fingerprint within the first 
one by simply minimizing the mean squared error between the values of the two data 
series. As can be seen in figure 1, it is necessary to stretch one of the two fingerprints 
like an elastic band before it is possible to calculate a good alignment of the two data 
series. 

Our main aim was to develop algorithms to align two fingerprints of the same coil 
after one and before the following production step. Therefore, we have to deal with 
vertical and horizontal errors as described above. In order to be able to compare the 
two data series, we consider one fingerprint as fixed (we will refer to it as the “fixed 
coil”) and transform the other coil (the “align coil”) onto the same scale. The 
necessary stretching/compression of the align coil corresponds to a horizontal scaling. 
An additional difficulty is that in most production steps short pieces of the coil are cut 
off at the beginning and at the end, because they have been damaged or are 
inhomogeneous (head and tail scrap). Hence, we also have to find the starting position 
of the align coil within the fixed coil. This corresponds to a positive offset. So, the 
assumption holds that the second data series is an inner part of the first one. 
Even though all described methods have been developed, adapted or/and chosen to 
solve the described problem for thickness profiles of steel coils, they can also be 
applied to other data sets. We successfully used them on width profiles of steel coils 



and made some promising experiments on sea shell data. Like trees, sea shells form 
annual “rings”1 which can be compared in order to recognize particular environmental 
influences (e.g., extremely warm and cold years or the eruption of a volcano) or to 
reconstruct a chronology. 
 
a) 

 
 

b) 

 
Fig. 1. Two fingerprints of the same coil after one and before the next production step: a) the 
two profiles below each other, b) the two profiles in the same window: Obviously, there are 
similarities but those similarities are not easy to detect automatically when comparing the two 
series straight away because of the horizontal stretching/compression.  

In general, there are two different approaches: Either to calculate/estimate the 
horizontal scaling first and figure out the offset in a second step or to calculate these 
two parameters simultaneously. We developed methods for both variants, implemen-
ted them in Java and examined them on different real and synthetic data sets. 

The rest of the paper is organized as follows: In section 2 we briefly deal with 
related work. In particular, we will explain some algorithms and ideas which 
motivated our approaches to solve the task of estimating a horizontal scaling and an 
offset in time series. We then formally describe the problem in section 3 and describe 
some aspects of the data we worked with. In section 4 we explain the different 
algorithms and approaches we used. The results and evaluation methodology of our 

                                                           
1 In sea shells, these structures are not circular but differences in the annual rates of shell 

growth show up as lines with different distances and can be measured, too. 



experiments are listed in section 5, before we conclude the paper in section 6 with a 
discussion of our findings and a look at future work. 

2   Related Work 

Our problem is a special form of time series analysis. There are similar problems in 
image processing, automatic speech recognition, dendrochronology and bioinfor-
matics. We took the following approaches into account, modified and enhanced them 
where necessary and applied them to our data. 

2.1 Calculation of Offset and Scaling Based on Fast Fourier Transform (FFT)  

To find an alignment of two data series with the same scaling, a naïve approach is to 
calculate the mean squared error for each possible offset. More precisely, we place the 
align coil at the starting position of the fixed coil first and slide it point by point to the 
right afterwards. The mean squared error between the time series is calculated for 
each possible position. The best match comes with the least error and its starting 
position is the offset. The whole procedure can be accelerated by carrying out the 
necessary operations via FFT, which reduces the quadratic run time to  for 
the calculation of the correlation (for details see section 4.1). 

)log( nnO ⋅

We can repeat this process for every possible scaling and finally pick the 
combination of scaling and offset which delivers the least mean squared error over all 
possible combinations (see section 3.1 and section 4.1). 

Furthermore, it is even possible to determine the scaling factor directly by using 
FFT [2]. It shows up as an impulse in the frequency domain (see section 4.2). 

2.2   Dynamic Time Warping (DTW) 

Dynamic time warping [3,4] is used for pattern-recognition through comparison of 
two data series, e.g., for image retrieval, handwriting retrieval, speech recognition and 
to determine the age of a given piece of wood by comparing its annual rings’ structure 
to the reconstructed dendrochronology of wood for thousands of years [5,6,7]. The 
order of the data points stays unchanged, but each value in the second sequence is 
associated with the “best fitting value” at an allowed position in the first one. Several 
points in the second data series can be mapped onto the same point within the first 
sequence and vice versa, as long as the order within each series remains unchanged. 
Another restriction is that each point of the second data series has to be mapped on a 
point of the first one. The entire process corresponds to finding a path in the matrix of 
all possible point assignments, which minimizes the squared error. This optimization 
problem can be solved via dynamic programming. 

Run time and space of the so far described algorithm are quadratic. It is possible to 
adapt the Hirschberg algorithm [8] to this task so that space becomes linear by only 
doubling the run time. However, methods with quadratic run time are not suitable for 



long data series as in our steel coil example where the series can have up to 30,000 
data points. Since we figured out that the horizontal scaling of our data series is 
always between 0.9 and 1.1, we can restrict the matrix to a corridor around the 
diagonal, which reduces the run time to )( nbO ⋅  where  is the width of the corridor 
and thus, speed up the process a lot [5,9]. This variation of DTW is called Bounded 
Dynamic Time Warping (BDTW, see section 4.3). 

b

2.3   Shotgun Alignment 

Bioinformatics deals with alignment problems, too [10,11]. At first glance, these 
problems are quite different from our problem because there it is the aim to calculate 
an optimal or at least a good alignment of two DNA or protein sequences which are 
represented as strings over a finite alphabet. But, when a coil consists of parts which 
were welded together, our problem looks in a way similar to alignment-problems of 
pieces of DNA in bioinformatics. So, we had the idea to get inspiration from this field 
of research. Instead of calculating an alignment of two DNA or protein sequences, we 
have to calculate an alignment of two different but similar discrete data series. An 
important difference is that, in our case, we have no fixed character set but different 
discrete numbers/thicknesses. We can deal with this difference by comparing the 
interpolated thicknesses at certain positions itself instead of using weights for each 
possible pair of characters. A second difference is that gaps in the middle of a coil do 
not occur or are at least extremely rare. 

An additional problem is to calculate the horizontal scaling, which can be 
addressed by the following idea: Venter et al. [12] were the first to use the shotgun 
sequencing method to figure out the DNA-sequence of the human genome. Their idea 
was to produce several copies of the human genome, to cut each copy of the huge 
human chromosomes randomly into very small pieces, to sequence these pieces and to 
reassemble them automatically by using the overlaps. This process was much faster 
than the techniques used in the public Human Genome Project and only in highly 
repetitive regions less accurate (see section 4.4). 

3   The Data Series 

3.1 Definition of the Alignment-Problem 

Given two data series X  = , , , …,  and 0x 1x 2x 1−nx Y  = , , , …,  we 
want to minimize the mean squared error of the overlapping part. 

0y 1y 2y 1−my

The problem is that it is not possible to compare the given data points directly 
because of a different horizontal scaling. This scaling is assumed to be constant for 
each pair of data series. According to our studies, this delivers good results for the 
alignments of coil fingerprints. In other practical examples, we might have to cut the 
data series into smaller pieces and to calculate a scaling for each piece separately. 



If we calculate the scaling s  first, keep one data series unchanged (the fixed coil) 
and adapt the other data series (the align coil) by linear interpolation 
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we can calculate the mean squared error for each possible starting position of the 
modified second data series Y~  = 0

~y , 1
~y , 2

~y , …, 1
~

−ry  with ⎣ ⎦msr ⋅=  within the 
first data series X .  

As explained before, in steel production a coil is at most trimmed between two 
production steps. So, the second fingerprint should be found completely inside the 
first one. Hence, we can use the following formula to calculate the mean squared error 
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where  is the offset and  is the length of the corresponding part of Y  
within 
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It is necessary to transform the second data series vertically first, so that the mean 
values of both data series are equal, because MSE as distance measure is influenced 
by different values. 

3.2 Uniqueness of the Fingerprints 

Before actually aligning thickness profiles, we wanted to make sure that such a profile 
is really characteristic for a certain coil/piece of steel in a sense that it satisfies the 
fingerprint idea. Therefore, we wanted to know, how long a piece has to be to 
determine its origin or – in other words – how many values we need to make a deci-
sion. Since we had only a limited set of real data, we additionally generated and exa-
mined synthetic data to get a more general idea. As we figured out, our example data 
series can be modeled as a damped random walk, in our case as a discrete Ornstein-
Uhlenbeck-process [13]. The measuring point  can be calculated as follows 1+ix

zxx ii +⋅=+ α1  

where α  is a damping factor and the random variable  is normally 
distributed with mean 0 and standard deviation 
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d
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We estimated the parameters α  and σ  of this damped random walk from our data 

sets to generate synthetic data series. Visually those artificial data series could not be 
distinguished from a real data series by experts from the iba AG (“Turing test”). Then, 
we generated random walk series with 1,000,000 values, copied pieces of a given 
length by chance, added some realistic noise to those pieces and tried to locate their 
starting position within the original data series. We figured out that the noise is 
normally distributed and, thus, can be modeled as white noise (with different 
intensities in decibel). 

Our experiments showed that it is extremely unlikely to find two corresponding 
fingerprints by chance: Pieces of 1,500 points were located correctly in 99.8% of all 



test. Data series of 3,000 points or more can be considered as unique. As for the steel 
coils we usually have more than 8,000 data points, their thickness profiles can 
definitely be seen as fingerprints. 

4   Algorithms 

In this section we describe several algorithms we developed, adapted or simply 
applied to solve the task of aligning noisy and uniformly scaled time series. 

4.1 Naïve Alignment (without and with FFT) 

The simplest approach is to calculate the optimal position of the align coil within the 
fixed coil by directly minimizing the mean squared error. As we found out 
empirically, the horizontal scaling always varies only between 0.9 and 1.1, we try 
every possible scaling in between (the number is limited because our data sets are 
discrete, so it is sufficient to try each scaling that maps at least one point of the align 
coil onto a different one of the fixed coil). We then choose the parameters for scaling 
and offset that produced the smallest mean squared error. Obviously, this process is 
quadratic for each possible scaling and therefore quite time consuming, but it can be 
accelerated through the use of a fast Fourier transform as follows. The calculation of 
the mean squared error can be split into three sums  
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where the first one varies only by one value when the offset is moved one step further, 
the second one is the correlation and can be calculated simultaneously for all possible 
offsets in the frequency domain with a variation of the common FFT-based 
calculation of the convolution [14] and the third one is constant for all offsets. 

4.2 Calculation of the Scaling in the Frequency Domain 

It is also possible to calculate the scaling directly in the frequency domain. The idea 
comes from the field of image processing. We followed the course of action proposed 
in [2] and slightly optimized it for the one dimensional data. 
Given a function  and its scaled and translated replica )(1 tf )()( 12 hstftf += , their 
corresponding Fourier transforms  and  will be related by  1F 2F
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Therefore the following relation for the magnitudes of  and  (  and  
respectively) holds after converting the x-axis to the logarithmic scale  
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Thus the scaling is reduced to a translational movement and can be found by the 

phase correlation technique, which uses the cross-power spectrum 
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where  denotes the Fourier transform of  and   denotes the complex 
conjugate of the Fourier transform of . 
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By taking inverse Fourier transform on the cross-power spectrum, we will have an 

impulse, which is approximately zero everywhere except at the sought-after 
displacement a. After scaling the data, we can use the same phase correlation 
technique for finding the offset . h

Although the described theory can be applied to our problem, there are some 
subtleties which must be considered in order to get good results in practice. The 
problems arise because the assumption that one function is a replica of another is not 
entirely true due to noise and other errors. On the other hand, we use the discrete 
Fourier transform for concrete computation and this can be a source of further errors 
due to aliasing and other effects. 

The following course of action seems to yield the best results: 
 

1. Not the magnitude spectra iM  but log-magnitude spectra iMlog  should be used.  
2. Because of the fact, that the Fourier spectrum is conjugate symmetric for real 

sequences, only one half of the spectrum should be used. 
3. Only a small window in the middle of the logarithmic scale can be used for our 

purposes. This is due to the fact, that the first points on the logarithmic scale are 
calculated by means of the linear interpolation from only very few data points in 
the original lattice and thus contain not much information. On the other hand, it 
seems as if the higher frequencies were the consequence of the noise and do not 
comprise any useful information. Experiments have shown that the choice of the 
right window is the most crucial. 

 

The complexity of this approach is dominated by the costs of getting the Fourier 
transforms and therefore is of time complexity )log( nnO ⋅  when using the fast Fourier 
transform. 

The sensitive spot of this technique is the determination of the right scaling. The 
noise in the data has a negative impact on the correctness of the result yielded by the 
algorithm. Using the FFT accelerated approach described in 4.1 to determine the 
horizontal scaling gives better results, but is also susceptible to extreme noise. 

This technique is a good choice for time series with little noise, since the 
probability of an incorrect matching rises with the level of the noise. 



4.3 Bound Dynamic Time Warping with Regression Analysis 

As mentioned before, BDTW can be used to align two given coils, as well. Each point 
of the align coil is mapped on the best fitting point of the fixed coil while maintaining 
the order in both series. Then, each pair of mapped indices , i.e., data point  

of the fixed coil has been mapped on data point  of the align coil, is interpreted as 
a point in a two dimensional coordinate system. Then, the best linear approximation 

 of all those points is calculated by regression analysis. Therefore, the 
squared error  
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is minimized which can be easily done by solving a system of linear equations. 
Above,  is an estimation for the horizontal scaling of the align coil, b  is an 

estimation for the offset. Figure 2 shows a mapping illustrating the alignment. 
m

 

 
Fig. 2. BDTW shown at the example of two coils 

4.4 Shotgun Analysis (without and with Regression Analysis) 

The method of shotgun sequencing and reassembling the parts afterwards was 
invented by Celera Genomics in the Human Genome Project [12] and inspired us for 
another approach: The shorter the align coil, the less impact has the usually small 
horizontal scaling on the alignment. Hence, our idea was to cut the align coil into 
pieces of a certain length  (e.g., of 50 meters = 500 values) and to locate these 
snippets within the fixed coil by a normal naïve alignment where no horizontal 
scaling is taken into account. Figure 3 gives an impression how the method works. 

sm

The median of the differences between the calculated starting positions of every 
pair of subsequent snippets divided by the length of the snippets can be used as 
horizontal scaling between the two data series. After an interpolation step as described 
in 3.1 the offset of the whole align coil can be calculated naïvely by minimizing the 
mean squared error. 



 
Fig. 3. The “best” positions of the different snippets of the second coil within the first one are 
shown by boxes. As you can see, the first four snippets are positioned extremely good, while 
the positions of some other snippets are inconsistent. 

The naïve alignment at the end is not necessary. It is possible to calculate scaling 
and offset simultaneously by linear regression: The expected and the found starting 
position of each snippet is interpreted as a point in a two dimensional coordinate 
system (  is the expected starting position,  is the found starting position). Again 
the best linear approximation 

ik il
bkmkf +⋅=)(  of all those points is calculated, where  

is an estimation for the horizontal scaling of the align coil and b  is an estimation for 
the offset. The computation time is quadratic or more precisely 

m
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is the number of the snippets and  is the length of each snippet. 
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One problem is that the order of the pieces can be inconsistent, especially when a 

piece seems to fit well on different positions inside the fixed coil, what can be true for 
quite a number of them. To avoid this, we used only characteristic snippets to 
construct the regression line. A snippet is assumed to be characteristic, if the error at 
its best fitting position is considerably lower than at any other position. 

Obviously, this is a heuristic approach. On high quality data, it might be less 
accurate than the algorithms described before (even though it still produces good 
results that cannot be distinguished from the other results visually in most cases). Its 
main advantage is that it is very tolerant to noise and local outliers. This occurs quite 
often in practice because of measurement failures and/or dirt on a coil. Extremely bad 
fitting snippets can simply be ignored.  

4.5 Alternative Quality Criteria 

Instead of the mean squared error two other quality criteria can be used, the (ordinary) 
correlation or the coefficient of parallel variation2 [15]. The latter can be seen as a 
signum function on the differences between data points. An advantage of the corre-
lation is that it implies a normalization of the data. It is tolerant to different means and 
to a vertical scaling of the data. The coefficient of parallel variation is even more tole-

                                                           
2 In related literature, we also encountered the German technical term 

„Gleichläufigkeitskoeffizient“ quite often. 



rant to noise, as it merely considers the direction of a change what makes it especially 
helpful for the naïve approach on bad data. It can also be calculated via our FFT 
algorithm.  

5 Experiments 

To analyze the quality of the different algorithms which we described in section 4, we 
ran several experiments. They had different aims, provided insights in different 
aspects of the algorithms’ performance and reflected different tasks in our application 
scenario of steel coil tracking. 

The time complexity of all algorithms has been explained above. In practice, they 
all need 0.5 to 3 seconds to construct an alignment of two data series with 5,000 to 
8,000 measuring points. It is hard to compare their run time exactly because it 
depends on length and structure of the data series. 

5.1 Determination of the Horizontal Scaling  

Since the horizontal scaling was unknown for all practical examples, we used syn-
thetic data to show that the developed methods are able to determine it correctly. 
Therefore, we created “coil data” with head and tail scrap artificially: We first created 
1,000 time series modeled by a damped random walk (the “fixed coils”). Then, we 
scaled and trimmed a copy of these data and added some white noise to produce cor-
responding “align coils”. Since, for these data, we know the scaling (and the offset), 
they are perfectly suitable for our tests (a gold standard). The average difference 
between real and calculated scaling was less then  for all our methods, which 
means that all methods have an average accuracy of more than three decimal places. 

4105 −⋅

5.2 Recognition of Head and Tail Scrap 

The intention of this experiment was to analyze the capability of the algorithms to 
estimate the parameters for offset and scaling. If head and tail scrap are calculated 
correctly, also the scaling must have been determined correctly. This is clear because 
our methods calculate only scaling and offset. The ending position is computed from 
these two parameters afterwards. 

We used different data series for this test. On the one hand, we used real world data 
of coil thickness profiles recorded during steel production at the end of the first and 
before the second production step. On the other hand, we used again synthetic data. 

5.2.1 Real World Data 

As mentioned before, the real world data is noisy under several aspects: First of all, 
the devices measuring the thickness are based on different technologies and, 
therefore, have a different resolution and accuracy. Second, the speed of the steel strip 



while passing through the production plant is measured indirectly and at a different 
point than the thickness. This setup causes the observed differences in the horizontal 
scaling in the data. In the beginning of the research project the steel mill voestalpine 
AG in Linz, Austria provided us with information on 20 coils. We had two data series 
for each coil, one measured after the hot rolling mill and one right before the next 
production step, the cold rolling mill. In addition, we knew the real length of the coil 
along with the amount of steel cut off at the beginning and at the end of the coil 
before the second production step (head and tail scrap). This information should have 
been sufficient to use it as a gold standard to compare our calculated results – 
assumed the data were precise enough. Unfortunately, the production conditions did 
not allow a correct measurement of the parts that had been cut off, so the values given 
to us finally turned out to be only rough estimates. A visual analysis of the alignments 
revealed that our methods delivered far more accurate results. Such an alignment is 
shown in figure 4.  
 

 
Fig. 4. An alignment of two fingerprints of the coil already shown in figure 1 

5.2.2 Artificial Data 

To run tests on a larger scale and to be able to evaluate the results, we again used the 
artificial data described in 5.1. Apart from white noise, scaling and trimming of a coil 
at the beginning and the end we observed other, more rare and particular noise in real 
world coil data. The devices to measure and record the thickness might temporarily 
fail. In this case the data series contains a long period (several hundred data points) of 
zero values. Another problem is dirt, pieces of steel or holes in the coil. They cause 
extremely short (1 to 5 data points) peaks in the time series. This kind of noise is 
difficult to handle.  

To analyze how robust the algorithms are towards these phenomena we created 
further artificial data which contained also this kind of noise. The results of our test 
on synthetic data are shown in table 1 and 2. 



Table 1.  Accuracy of the different methods using MSE as quality criterion: Fraction of 
correctly aligned data series: An alignment was classified as correct when the real and the 
calculated starting and ending position of the second data series within the first one where no 
more than 5 points away from each other (equal to half a meter). 

method normal with 3 peaks with 3 zero 
lines 

with both 

Alignment with FFT 1.0 0.659 1.0 0.634 
BDTW with Regression 1.0 0.117 0.546 0.107 
Shotgun Analysis 0.952 0.953 0.96 0.945 
 
Table 1 shows e.g., that in all “simple” cases the second data series was aligned 
correctly to the first one with the FFT-based approach described in section 4.1 and 
with the BDTW method described in 4.3, whereas the Shotgun Analysis described in 
4.4 achieves comparably better results on data series with errors (e.g., still 94.5% 
correct alignments of all data series with zero lines and peaks). 

Table 2.  Accuracy of the different methods using MSE as quality criterion: Average difference 
(in data points) between real and found starting and ending position of the second data series 
within the first. 

Method normal with 3 peaks with 3 zero 
lines 

with both 

Alignment with FFT 0.51|0.20 17.95|17.89 0.51|0.19 19.73|19.65 
BDTW with Regression 1.62|1.15 119.85|119.88 7.79|7.72 115.20|115.26 
Shotgun Analysis 1.64|1.55 1.72|1.64 1.72|1.61 6.60|6.54 
 
In table 2, you can see the average difference of “real” and calculated head and tail 
scrap. The first number stands for the average difference in head scrap, the second 
one for the average difference in tail scrap. Here, it becomes clear that the Shotgun 
Analysis is only slightly less accurate than for example BTDW with Regression on 
good data. The result in table 1 seems worse because there, an alignment is 
categorised as wrong if its starting or ending position differs 6 or 7 instead of the 
allowed maximal 5 points from the “real” starting or ending position. This difference 
can hardly be noticed by visual inspection. 

5.3 Searching a Database for Fitting Pairs of Fingerprints 

The last test comprised again the fingerprint idea. For this analysis, we were provided 
with data of about 1,000 hot rolled strips and 191 cold rolled strips. The latter ones 
were the values of 191 coils among the 1,000 whose thickness was measured again at 
the beginning of the next production step. Here, we had a gold standard from the steel 
producers database, providing unique numerical identifiers for the coils. Our task was 
to identify the 191 among the 1000. Even with the simplest approach described in 4.1, 
we achieved the very high accuracy of 98%, that means, given the fingerprint of a coil 
from the beginning of the second production step, we where able to identify the 
corresponding one from the end of the first production step in most cases. 



To accelerate the process and as for this matching task we do not need highly 
precise alignments, it is possible to compress the data by a method called piecewise 
aggregate approximation (PAA). Here, e.g. 30 consecutive points are mapped onto 
one new point by calculating their mean value. This way one gets a compression 
factor of 30. This gives a considerable speed-up since many candidate coils can be 
excluded fast. On the compressed data, we got an even higher accuracy of 100% 
because small inaccuracies are smoothened through the averaging. In this way, it is 
possible to identify the corresponding hot rolled strip to a given cold rolled strip 
within 1,000 candidates in less than 5 seconds. 

6   Conclusions and Future Work 

As illustrated above, the different methods have different strengths and weaknesses: 
Exact methods are more precise on good data sets but less robust to noise and errors. 
Therefore, for the practical use, it would be a good idea to have an automated choice 
of the alignment method based on the peculiarities of the involved data series. 
Another idea is to manipulate the data in a way that extreme outliers are “smoothed” 
before the alignment. We already made some experiments and got promising results 
but have not yet tested them systematically. 

In some (exceptional) case, there can be gaps within a data series (e.g., because an 
erroneous part has been cut out). It is already possible to deal with those cases by 
cutting such a data series into two pieces and then aligning each piece. The shotgun 
method is in principle able to ignore the missing parts and to calculate the scaling 
only for the segments that can be found in both data series. An additional task would 
be to detect such gaps automatically and to calculate two different offsets and scalings 
for the two parts. 

So far, our methods are restricted to a linear/constant horizontal scaling, which 
might not be true in all practical examples. Some of our methods (especially the ideas 
described in 4.3 and 4.4) have the potential to overcome this limitation, e.g., by 
replacing the linear regression by more sophisticated methods.  

An alternative in practice is to compute alignments based on width profiles instead 
of thickness profiles which is also possible with the described methods. Besides, the 
described methods can basically be used to align any two data series of numerical 
values. Another practical example we are dealing with is the alignment of annual sea 
shell growth measurements to obtain a chronology as described above (see section 1). 
Therefore, it would be good to allow the alignment of more than two data series. 
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Remarks  

A selection of the methods described in this paper has been integrated into the freely 
available tool iba-Analyzer which can be found at the website of the iba AG at 
http://www.iba-ag.com/. 
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